elastic wave energy
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Xian’e Yang ◽  
Jiahui Zhong ◽  
Jiawei Xiang

Abstract Phononic crystal (PnC) has been proved for its manipulation and amplification of elastic waves. Using this characteristic of PnC to assist energy harvesting has remarkable effect. Generally, defect occurs when unit cell in PnC is replaced by another cell with different geometric or material properties, the output electric power of piezoelectric energy harvesting (PEH) devices will be significantly enhanced. In this study, a cross hole-type PnC-assisted PEH device with a large-size defect is presented by replacing several adjacent multiple cells with other cells. It is found that multiple peak voltages can be created within BG and multimodal energy harvesting can be performed. Compared with the defect mode composed of a small-size defect, energy localization and amplification of the proposed PnC leads to substantially enhancement of harvesting power after tailoring geometric parameters of a PEH device. This work will be expected to design PnC-assisted PEH devices in a reasonable way.


2021 ◽  
Vol 118 (34) ◽  
pp. e2105211118
Author(s):  
Narsing K. Jha ◽  
Victor Steinberg

Originally, Kelvin–Helmholtz instability (KHI) describes the growth of perturbations at the interface separating counterpropagating streams of Newtonian fluids of different densities with heavier fluid at the bottom. Generalized KHI is also used to describe instability of free shear layers with continuous variations of velocity and density. KHI is one of the most studied shear flow instabilities. It is widespread in nature in laminar as well as turbulent flows and acts on different spatial scales from galactic down to Saturn’s bands, oceanographic and meteorological flows, and down to laboratory and industrial scales. Here, we report the observation of elastically driven KH-like instability in straight viscoelastic channel flow, observed in elastic turbulence (ET). The present findings contradict the established opinion that interface perturbations are stable at negligible inertia. The flow reveals weakly unstable coherent structures (CSs) of velocity fluctuations, namely, streaks self-organized into a self-sustained cycling process of CSs, which is synchronized by accompanied elastic waves. During each cycle in ET, counter propagating streaks are destroyed by the elastic KH-like instability. Its dynamics remarkably recall Newtonian KHI, but despite the similarity, the instability mechanism is distinctly different. Velocity difference across the perturbed streak interface destabilizes the flow, and curvature at interface perturbation generates stabilizing hoop stress. The latter is the main stabilizing factor overcoming the destabilization by velocity difference. The suggested destabilizing mechanism is the interaction of elastic waves with wall-normal vorticity leading to interface perturbation amplification. Elastic wave energy is drawn from the main flow and pumped into wall-normal vorticity growth, which destroys the streaks.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Soo-Ho Jo ◽  
Byeng D. Youn

Several previous studies have been dedicated to incorporating double defect modes of a phononic crystal (PnC) into piezoelectric energy harvesting (PEH) systems to broaden the bandwidth. However, these prior studies are limited to examining an identical configuration of the double defects. Therefore, this paper aims to propose a new design concept for PnCs that examines differently configured double defects for broadband elastic wave energy localization and harvesting. For example, a square-pillar-type unit cell is considered and a defect is considered to be a structure where one piezoelectric patch is bonded to a host square lattice in the absence of a pillar. When the double defects introduced in a PnC are sufficiently distant from each other to implement decoupling behaviors, each defect oscillates like a single independent defect. Here, by differentiating the geometric dimensions of two piezoelectric patches, the defects’ dissimilar equivalent inertia and stiffness contribute to individually manipulating defect bands that correspond to each defect. Hence, with adequately designed piezoelectric patches that consider both the piezoelectric effects on shift patterns of defect bands and the characteristics for the output electric power obtained from a single-defect case, we can successfully localize and harvest the elastic wave energy transferred in broadband frequencies.


Nano Energy ◽  
2020 ◽  
Vol 78 ◽  
pp. 105226 ◽  
Author(s):  
Tae-Gon Lee ◽  
Soo-Ho Jo ◽  
Hong Min Seung ◽  
Sun-Woo Kim ◽  
Eun-Ji Kim ◽  
...  

Author(s):  
H. Danawe ◽  
Z. Wang ◽  
S. Tol ◽  
G. Okudan ◽  
D. Ozevin

Abstract In this paper, we propose a novel gradient index metamaterial lens to focus elastic wave energy in polymer pipes. We investigate multi-mode focusing of guided ultrasonic waves in a poly-vinyl chloride (PVC) pipe by designing and integrating an embedded gradient index (GRIN) lens within the pipe wall. The metamaterial lens is composed of equally spaced cylindrical brass inserts embedded into the pipe wall. All the inserts are of same height which is equal to the half-thickness of the pipe. Insert diameters are varied in circumferential direction to realize hyperbolic secant distribution of refractive index around the circumference of pipe. We explore focusing of three pipe wave modes commonly used for guided wave inspection of pipelines namely, L(0,2), L(0,1) and T(0,1), using a single lens design. We further verify the lens performance through numerical simulations estimating the amplification of wave energy in focal regions of the GRIN lens for these three modes. We also estimate attenuation of guided waves propagating in PVC pipe through experimental measurements.


2020 ◽  
Vol 13 (5) ◽  
Author(s):  
Min Soo Kim ◽  
Woorim Lee ◽  
Chung Il Park ◽  
Joo Hwan Oh

2017 ◽  
Vol 93 ◽  
pp. 255-266 ◽  
Author(s):  
K. Yi ◽  
M. Collet ◽  
S. Chesne ◽  
M. Monteil

2017 ◽  
Vol 26 (3) ◽  
pp. 035040 ◽  
Author(s):  
K Yi ◽  
M Monteil ◽  
M Collet ◽  
S Chesne

Sign in / Sign up

Export Citation Format

Share Document