scholarly journals Intelligent System for Continuous Steel Casting Based on Water Flow Control in the Secondary Cooling Stage

2016 ◽  
Vol 68 ◽  
pp. 10003 ◽  
Author(s):  
Gelu-Ovidiu Tirian ◽  
Ioan Filip ◽  
Cristian Paul Chioncel
Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Michal Brezina ◽  
Tomas Mauder ◽  
Lubomir Klimes ◽  
Josef Stetina

The paper presents the comparison of optimization-regulation algorithms applied to the secondary cooling zone in continuous steel casting where the semi-product withdraws most of its thermal energy. In steel production, requirements towards obtaining defect-free semi-products are increasing day-by-day and the products, which would satisfy requirements of the consumers a few decades ago, are now far below the minimum required quality. To fulfill the quality demands towards minimum occurrence of defects in secondary cooling as possible, some regulation in the casting process is needed. The main concept of this paper is to analyze and compare the most known metaheuristic optimization approaches applied to the continuous steel casting process. Heat transfer and solidification phenomena are solved by using a fast 2.5D slice numerical model. The objective function is set to minimize the surface temperature differences in secondary cooling zones between calculated and targeted surface temperatures by suitable water flow rates through cooling nozzles. Obtained optimization results are discussed and the most suitable algorithm for this type of optimization problem is identified. Temperature deviations and cooling water flow rates in the secondary cooling zone, together with convergence rate and operation times needed to reach the stop criterium for each optimization approach, are analyzed and compared to target casting conditions based on a required temperature distribution of the strand. The paper also contains a brief description of applied heuristic algorithms. Some of the algorithms exhibited faster convergence rate than others, but the optimal solution was reached in every optimization run by only one algorithm.


2015 ◽  
Vol 60 (1) ◽  
pp. 251-256 ◽  
Author(s):  
K. Miłkowska-Piszczek ◽  
J. Falkus

Abstract This paper presents development and the application of a numerical model of the continuous steel casting process to optimise the strand solidification area. The design of the numerical model of the steel continuous casting process was presented and which was developed based on the actual dimensions of the slab continuous casting machine in ArcelorMittal Poland Unit in Kraków. The S235 steel grade and the cast strand format of 220×1280 mm were selected for the tests. Three strand casting speeds were analysed: 0.6, 0.8 and 1 m min-1. An algorithm was presented, allowing the calculation of the heat transfer coefficient values for the secondary cooling zone. In order to verify the results of numerical simulations, additional temperature measurements of the strand surface within the secondary cooling chamber were made. The ProCAST software was used to construct the numerical model of continuous casting of steel.


1999 ◽  
Vol 32 (2) ◽  
pp. 7119-7124
Author(s):  
Ning Wang ◽  
Shuqing Wang ◽  
Jianming Zhang

Sign in / Sign up

Export Citation Format

Share Document