efficient data
Recently Published Documents





2022 ◽  
Vol 16 (4) ◽  
pp. 1-22
Mu Yuan ◽  
Lan Zhang ◽  
Xiang-Yang Li ◽  
Lin-Zhuo Yang ◽  
Hui Xiong

Labeling data (e.g., labeling the people, objects, actions, and scene in images) comprehensively and efficiently is a widely needed but challenging task. Numerous models were proposed to label various data and many approaches were designed to enhance the ability of deep learning models or accelerate them. Unfortunately, a single machine-learning model is not powerful enough to extract various semantic information from data. Given certain applications, such as image retrieval platforms and photo album management apps, it is often required to execute a collection of models to obtain sufficient labels. With limited computing resources and stringent delay, given a data stream and a collection of applicable resource-hungry deep-learning models, we design a novel approach to adaptively schedule a subset of these models to execute on each data item, aiming to maximize the value of the model output (e.g., the number of high-confidence labels). Achieving this lofty goal is nontrivial since a model’s output on any data item is content-dependent and unknown until we execute it. To tackle this, we propose an Adaptive Model Scheduling framework, consisting of (1) a deep reinforcement learning-based approach to predict the value of unexecuted models by mining semantic relationship among diverse models, and (2) two heuristic algorithms to adaptively schedule the model execution order under a deadline or deadline-memory constraints, respectively. The proposed framework does not require any prior knowledge of the data, which works as a powerful complement to existing model optimization technologies. We conduct extensive evaluations on five diverse image datasets and 30 popular image labeling models to demonstrate the effectiveness of our design: our design could save around 53% execution time without loss of any valuable labels.

2022 ◽  
Vol 22 (1) ◽  
pp. 1-18
Chen Chen ◽  
Lei Liu ◽  
Shaohua Wan ◽  
Xiaozhe Hui ◽  
Qingqi Pei

As a key use case of Industry 4.0 and the Smart City, the Internet of Vehicles (IoV) provides an efficient way for city managers to regulate the traffic flow, improve the commuting performance, reduce the transportation facility cost, alleviate the traffic jam, and so on. In fact, the significant development of Internet of Vehicles has boosted the emergence of a variety of Industry 4.0 applications, e.g., smart logistics, intelligent transforation, and autonomous driving. The prerequisite of deploying these applications is the design of efficient data dissemination schemes by which the interactive information could be effectively exchanged. However, in Internet of Vehicles, an efficient data scheme should adapt to the high node movement and frequent network changing. To achieve the objective, the ability to predict short-term traffic is crucial for making optimal policy in advance. In this article, we propose a novel data dissemination scheme by exploring short-term traffic prediction for Industry 4.0 applications enabled in Internet of Vehicles. First, we present a three-tier network architecture with the aim to simply network management and reduce communication overheads. To capture dynamic network changing, a deep learning network is employed by the controller in this architecture to predict short-term traffic with the availability of enormous traffic data. Based on the traffic prediction, each road segment can be assigned a weight through the built two-dimensional delay model, enabling the controller to make routing decisions in advance. With the global weight information, the controller leverages the ant colony optimization algorithm to find the optimal routing path with minimum delay. Extensive simulations are carried out to demonstrate the accuracy of the traffic prediction model and the superiority of the proposed data dissemination scheme for Industry 4.0 applications.

2022 ◽  
Vol 9 (1) ◽  
Jan Cimbalnik ◽  
Jaromir Dolezal ◽  
Çağdaş Topçu ◽  
Michal Lech ◽  
Victoria S. Marks ◽  

AbstractData comprise intracranial EEG (iEEG) brain activity represented by stereo EEG (sEEG) signals, recorded from over 100 electrode channels implanted in any one patient across various brain regions. The iEEG signals were recorded in epilepsy patients (N = 10) undergoing invasive monitoring and localization of seizures when they were performing a battery of four memory tasks lasting approx. 1 hour in total. Gaze tracking on the task computer screen with estimating the pupil size was also recorded together with behavioral performance. Each dataset comes from one patient with anatomical localization of each electrode contact. Metadata contains labels for the recording channels with behavioral events marked from all tasks, including timing of correct and incorrect vocalization of the remembered stimuli. The iEEG and the pupillometric signals are saved in BIDS data structure to facilitate efficient data sharing and analysis.

2022 ◽  
Ahmed Taloba ◽  
Mohamed Ahmed Fouly ◽  
Taysir Soliman

Abstract Distributed computing includes putting aside the data utilizing outsider storage and being able to get to this information from a place at any time. Due to the advancement of distributed computing and databases, high critical data are put in databases. However, the information is saved in outsourced services like Database as a Service (DaaS), security issues are raised from both server and client-side. Also, query processing on the database by different clients through the time-consuming methods and shared resources environment may cause inefficient data processing and retrieval. Secure and efficient data regaining can be obtained with the help of an efficient data processing algorithm among different clients. This method proposes a well-organized through an Efficient Secure Query Processing Algorithm (ESQPA) for query processing efficiently by utilizing the concepts of data compression before sending the encrypted results from the server to clients. We have addressed security issues through securing the data at the server-side by an encrypted database using CryptDB. Encryption techniques have recently been proposed to present clients with confidentiality in terms of cloud storage. This method allows the queries to be processed using encrypted data without decryption. To analyze the performance of ESQPA, it is compared with the current query processing algorithm in CryptDB. Results have proven the efficiency of storage space is less and it saves up to 63% of its space.

2022 ◽  
Haipeng Zhang ◽  
Ke Li ◽  
Changzhe Zhao ◽  
Jie Tang ◽  
Tiqiao Xiao

Abstract Towards efficient implementation of X-ray ghost imaging (XGI), efficient data acquisition and fast image reconstruction together with high image quality are preferred. In view of radiation dose resulted from the incident X-rays, fewer measurements with sufficient signal-to-noise ratio (SNR) are always anticipated. Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously. In this paper, a method based a modified compressive sensing algorithm called CGDGI, is developed to solve the problem encountered in available XGI methods. Simulation and experiments demonstrated the practicability of CGDGI-based method for the efficient implementation of XGI. The image reconstruction time of sub-second implicates that the proposed method has the potential for real time XGI.

Achyut Shankar ◽  
Rajaguru Dayalan ◽  
Chinmay Chakraborty ◽  
Chandramohan Dhasarathan ◽  
Manish Kumar

2022 ◽  
Jie E Yang ◽  
Matthew R Larson ◽  
Bryan S Sibert ◽  
Joseph Y Kim ◽  
Daniel Parrell ◽  

Imaging large fields of view while preserving high-resolution structural information remains a challenge in low-dose cryo-electron tomography. Here, we present robust tools for montage electron tomography tailored for vitrified specimens. The integration of correlative cryo-fluorescence microscopy, focused-ion beam milling, and micropatterning produces contextual three-dimensional architecture of cells. Montage tilt series may be processed in their entirety or as individual tiles suitable for sub-tomogram averaging, enabling efficient data processing and analysis.

Sign in / Sign up

Export Citation Format

Share Document