scholarly journals Computing some role assignments of Cartesian Product of Graphs

Author(s):  
Diane Castonguay ◽  
Elisângela Silva Dias ◽  
Fernanda Neiva Mesquita ◽  
Julliano Rosa Nascimento

In social networks, a role assignment is such that individuals play the same role, if they relate in the same way to other individuals playing counterpart roles. As a simple graph models a social network role assignment rises to the decision problem called r -Role Assignment whether it exists such an assignment of r distinct roles to the vertices of the graph. This problem is known to be NP-complete for any fixed r ≥ 2. The Cartesian product of graphs is one of the most studied operation on graphs and has numerous applications in diverse areas, such as Mathematics, Computer Science, Chemistry and Biology. In this paper, we determine the computational complexity of r -Role Assignment restricted to Cartesian product of graphs, for r = 2,3. In fact, we show that the Cartesian product of graphs is always 2-role assignable, however the problem of 3-Role Assignment is still NP-complete for this class.

2018 ◽  
Vol 10 (06) ◽  
pp. 1850082
Author(s):  
Somnath Paul

Let [Formula: see text] be a simple graph of order [Formula: see text] Let [Formula: see text] and [Formula: see text] where [Formula: see text] and [Formula: see text] are two nonzero integers and [Formula: see text] is a positive integer such that [Formula: see text] is not a perfect square. In [M. Lepovi[Formula: see text], On conjugate adjacency matrices of a graph, Discrete Mathematics 307 (2007) 730–738], the author defined the matrix [Formula: see text] to be the conjugate adjacency matrix of [Formula: see text] if [Formula: see text] for any two adjacent vertices [Formula: see text] and [Formula: see text] for any two nonadjacent vertices [Formula: see text] and [Formula: see text] and [Formula: see text] if [Formula: see text] In this paper, we define conjugate Laplacian matrix of graphs and describe various properties of its eigenvalues and eigenspaces. We also discuss the conjugate Laplacian spectra for union, join and Cartesian product of graphs.


2016 ◽  
Vol 11 (9) ◽  
pp. 5654-5660
Author(s):  
Essam EI Seidy ◽  
Salah ElDin Hussein ◽  
Atef Abo Elkher

In this paper, we consider a finite undirected and connected simple graph G(E, V) with vertex set V(G) and edge set E(G).We introduced a new computes the spectra of some operations on simple graphs [union of disjoint graphs, join of graphs, cartesian product of graphs, strong cartesian product of graphs, direct product of graphs].


1992 ◽  
Vol 16 (4) ◽  
pp. 297-303
Author(s):  
Elefterie Olaru ◽  
Eugen M??ndrescu

2014 ◽  
Vol 06 (01) ◽  
pp. 1450001 ◽  
Author(s):  
M. R. CHITHRA ◽  
A. VIJAYAKUMAR

The diameter of a graph can be affected by the addition or deletion of edges. In this paper, we examine the Cartesian product of graphs whose diameter increases (decreases) by the deletion (addition) of a single edge. The problems of minimality and maximality of the Cartesian product of graphs with respect to its diameter are also solved. These problems are motivated by the fact that most of the interconnection networks are graph products and a good network must be hard to disrupt and the transmissions must remain connected even if some vertices or edges fail.


2019 ◽  
Vol 12 (2) ◽  
pp. 499-505
Author(s):  
Caen Grace Sarona Nianga ◽  
Sergio R. Canoy Jr.

Let G = (V (G),E(G)) be any simple undirected graph. The open hop neighborhood of v ϵ V(G) is the set 𝑁_𝐺^2(𝑣) = {u ϵ V(G):  𝑑_𝐺 (u,v) = 2}. Then G induces a topology τ_G on V (G) with base consisting of sets of the form F_G^2[A] = V(G) \ N_G^2 [A] where N_G^2 [A] = A ∪ {v ϵ V(G):  𝑁_𝐺^2(𝑣) ∩ A ≠ ∅ } and A ranges over all subsets of V (G). In this paper, we describe the topologies induced by the complement of a graph, the join, the corona, the composition and the Cartesian product of graphs.


10.37236/2535 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
K. Choudhary ◽  
S. Margulies ◽  
I. V. Hicks

A dominating set $D$ for a graph $G$ is a subset of $V(G)$ such that any vertex not in $D$ has at least one neighbor in $D$. The domination number $\gamma(G)$ is the size of a minimum dominating set in G. Vizing's conjecture from 1968 states that for the Cartesian product of graphs $G$ and $H$, $\gamma(G)\gamma(H) \leq \gamma(G \Box H)$, and Clark and Suen (2000) proved that $\gamma(G)\gamma(H) \leq 2 \gamma(G \Box H)$. In this paper, we modify the approach of Clark and Suen to prove a variety of similar bounds related to total and paired domination, and also extend these bounds to the $n$-Cartesian product of graphs $A^1$ through $A^n$.


Sign in / Sign up

Export Citation Format

Share Document