In vitro and in vivo Studies of a New Sustained Release Formulation of Morphine

2011 ◽  
Vol 58 (12) ◽  
pp. 647-652
Author(s):  
Amparo Araíco ◽  
Francisca Torres-Molina ◽  
Anas Saadeddin ◽  
Jaime Cárcel-Trullols ◽  
Josefa Alvarez-Fuentes ◽  
...  
2011 ◽  
Vol 28 (5) ◽  
pp. 1157-1166 ◽  
Author(s):  
Satomi Onoue ◽  
Kazuki Kuriyama ◽  
Atsushi Uchida ◽  
Takahiro Mizumoto ◽  
Shizuo Yamada

PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0219599 ◽  
Author(s):  
Mor Shlezinger ◽  
Michael Friedman ◽  
Yael Houri-Haddad ◽  
Ronen Hazan ◽  
Nurit Beyth

Author(s):  
Nagratna Dhople ◽  
P N Dandag ◽  
A P Gadad ◽  
C K Pandey ◽  
Masthiholimath V S

A gastroretentive sustained release system of itopride hydrochloride was formulated to increase the gastric residence time and modulate its release behavior. Itopride hydrochloride is a prokinetic drug used in the treatment of gastroeosophageal reflux disease, Non-ulcer dyspepsia and as an antiemetic. Hence, itopride hydrochloride beads were prepared by emulsion gelation method by employing low methoxy pectin and sodium alginate as sustained release polymers in three different ratios alone and in combination and sunflower oil was used to enable floating property to the beads. The effect of variation in polymer and their concentration was investigated. The beads were evaluated for production yield, particle size, swelling index, density measurement, buoyancy, drug content, drug entrapment efficiency, in vitro release characteristics and release kinetic study. Based on drug entrapment efficiency, buoyancy, swelling and in vitro release, F9 was selected as the optimized formulation. F9 was further subjected to surface morphology by SEM, in vitro release comparison with marketed formulation, in vivo floating study in rabbits and stability study for 90 days. In vitro release follows zero order and fitted in Korsmeyer peppas model (Non-Fickian release). Therefore, the rate of drug release is due to the combined effect of drug diffusion and polymer swelling. The in vivo X-ray studies revealed that the beads were floating in the rabbit stomach up to 10 hours. Thus, it was concluded that the sustained release formulation containing itopride hydrochloride was found to improve patient compliance, minimize the side effects and decrease the frequency of administration.


2015 ◽  
Vol 18 (2) ◽  
pp. 157-162
Author(s):  
Samira Karim ◽  
Mohiuddin Ahmed Bhuiyan ◽  
Md Sohel Rana

This work aims at the design of a sustained release formulation of glimepiride which is currently available in the treatment of type 2 diabetes mellitus and to investigate the effect of polymers on the release profile of glimepiride. Glimepiride sustained release tablets were prepared by direct compression method using different ratios of various release retarding polymers such as carbopol, ethyl cellulose, methocel K4 MCR, methocel K15 MCR, methocel K100 MCR and xanthum gum. These formulations were also compared with glimepiride immediate release tablets. The prepared tablets were subjected to various physical parameter tests including weight variation, friability, hardness, thickness, diameter, etc. In vitro dissolution studies of the formulations were done at pH 6.8 in phosphate buffer using USP apparatus 2 (paddle method) at 50 rpm. The percent releases of all the formulations (30) were 73.11%- 98.76% after 8 hours. The release pattern followed zero order kinetics and the release of the drug was hindered by the polymers used in the study. On the other hand, 100% drug was released within 1 hour from the immediate release tablet of glimepiride. The study reveals that the polymers used have the capacity to retard the release of the drug from the sustained release tablets and the more is the amount of the polymer in the formulation the less is the release of drug showing more retardation of drug release.Bangladesh Pharmaceutical Journal 18(2): 157-162, 2015


1997 ◽  
Vol 45 (3) ◽  
pp. 249-256 ◽  
Author(s):  
Yihong Qiu ◽  
Howard Cheskin ◽  
Jackie Briskin ◽  
Kevin Engh

Sign in / Sign up

Export Citation Format

Share Document