polylactic acid
Recently Published Documents


TOTAL DOCUMENTS

3395
(FIVE YEARS 2071)

H-INDEX

90
(FIVE YEARS 36)

2022 ◽  
Vol 45 ◽  
pp. 102510
Author(s):  
Hiyam Khalil ◽  
Hanaa M. Hegab ◽  
Lobna Nassar ◽  
Vijay S. Wadi ◽  
Vincenzo Naddeo ◽  
...  

Author(s):  
A. ARUL JEYA KUMAR ◽  
NIRANJAN S. RAJ ◽  
C. SAIPRASAD ◽  
AGHALAYAM R. SUDHANVA

This paper is focused on the analysis of the morphological and thermal properties of the biomedical composites, polylactic acid (PLA) and polycaprolactone (PCL) matrix, reinforced with basalt fibers (BFs) and using halloysite nanotubes (HNT) as filler material. Four different composites, viz. PPHB 1, PPHB 2, PPHB 3 and PPHB 4, are obtained by varying the weight fractions of these materials using twin-screw extrusion followed by injection molding. The morphological characterization is performed on these composites using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. SEM reveals homogenous and strong bonding between the matrix, reinforcement and filler. The BF are well embedded in the matrix with a random orientation. No formation of voids and cracks is observed. The functional groups present and the types of vibration experienced by the chemical bonds were observed in the FTIR spectra. The composites are subjected to thermal testing such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The PPHB 2, which contains 80% PLA, 10% BF, 7% PCL and 3% HNT, has the highest degree of crystallinity, as revealed by DSC, and exhibits the most optimum thermal degradation characteristics as indicated by TGA.


Sign in / Sign up

Export Citation Format

Share Document