Retaining Alkyl Nucleophile Regiofidelity in Transition-Metal-Mediated Cross-Couplings to Aryl Electrophiles

Synthesis ◽  
2018 ◽  
Vol 50 (20) ◽  
pp. 3974-3996 ◽  
Author(s):  
Josep Cornella ◽  
Matthew O’Neill

While the advent of transition-metal catalysis has undoubtedly transformed synthetic chemistry, problems persist with the introduction of secondary and tertiary alkyl nucleophiles into C(sp2) aryl electrophiles. Complications arise from the delicate organometallic intermediates typically invoked by such processes, from which competition between the desired reductive elimination event and the deleterious β-H elimination pathways can lead to undesired isomerization of the incoming nucleophile. Several methods have integrated distinct combinations of metal, ligand, nucleophile, and electrophile to provide solutions to this problem. Despite substantial progress, refinements to current protocols will facilitate the realization of complement reactivity and improved functional group tolerance. These issues have become more pronounced in the context of green chemistry and sustainable catalysis, as well as by the current necessity to develop robust, reliable cross-couplings beyond less explored C(sp2)–C(sp2) constructs. Indeed, the methods discussed herein and the elaborations thereof enable an ‘unlocking’ of accessible topologically enriched chemical space, which is envisioned to influence various domains of application.1 Introduction2 Mechanistic Considerations3 Magnesium Nucleophiles4 Zinc Nucleophiles5 Boron Nucleophiles6 Other Nucleophiles7 Tertiary Nucleophiles8 Reductive Cross-Coupling with in situ Organometallic Formation9 Conclusion

Synthesis ◽  
2020 ◽  
Author(s):  
Yan-Wei Zhao ◽  
Shun-Yi Wang ◽  
Xin-Yu Liu ◽  
Tian Jiang ◽  
Weidong Rao

AbstractA synthesis of benzothiazole derivatives through the reaction of 2-halo-N-allylanilines with K2S in DMF is developed. The trisulfur radical anion S3·–, which is generated in situ from K2S in DMF, initiates the reaction without transition-metal catalysis or other additives. In addition, two C–S bonds are formed and heteroaromatization of benzothiazole is triggered by radical cyclization and H-shift.


2021 ◽  
Author(s):  
Kuo-Wei Huang ◽  
Theo P Goncalves ◽  
Indranil Dutta

Unlike the conventional model of transition metal catalysis, ligands in metal–ligand cooperative (or bifunctional) catalysis are involved in the substrate activations. Such processes have offered unique mechanistic understandings and led...


Synthesis ◽  
2021 ◽  
Author(s):  
Jie Jia ◽  
Fangdong Hu ◽  
Ying Xia

Transition-metal-catalyzed nucleophilic dearomatization of electron-deficient heteroarenes, such as pyridines, quinolines, isoquinolines and nitroindoles, has become a powerful method for the access of unsaturated heterocycles in recent decades. This short review summarizes nucleophilic dearomatization of electron-deficient heteroarenes with carbon- and heteroatom-based nucleophiles via transition-metal catalysis. A great number of functionalized heterocycles were obtained in this transformation. Importantly, many of these reactions were carried out in an enantioselective manner by means of asymmetric catalysis, providing a unique method for the construction of enantioenriched heterocycles. 1 Introduction 2 Transition-metal-catalyzed nucleophilic dearomatization of heteroarenes via alkynylation 3 Transition-metal-catalyzed nucleophilic dearomatization of heteroarenes via arylation 4 Transition-metal-catalyzed nucleophilic dearomatization of heteroarenes with other nucleophiles 5 Transition-metal-catalyzed nucleophilic dearomatization with nucleophiles formed in situ 6 Conclusion and outlook


2020 ◽  
Author(s):  
Evgeniy Bortnikov ◽  
Sergey Semenov

This work demonstrates that periodic oxidation and reduction of a catalyst by alternating current enable otherwise unfavorable catalytic cycles. Nickel catalyzed amination, etherification, and esterification were universally enabled by alternating current with yields and selectivity strongly exciding these in the experiments with direct current (DC).


2020 ◽  
Author(s):  
Evgeniy Bortnikov ◽  
Sergey Semenov

This work demonstrates that periodic oxidation and reduction of a catalyst by alternating current enable otherwise unfavorable catalytic cycles. Nickel catalyzed amination, etherification, and esterification were universally enabled by alternating current with yields and selectivity strongly exciding these in the experiments with direct current (DC).


Sign in / Sign up

Export Citation Format

Share Document