scholarly journals Aromaticity in catalysis: metal ligand cooperation via ligand dearomatization and rearomatization

2021 ◽  
Author(s):  
Kuo-Wei Huang ◽  
Theo P Goncalves ◽  
Indranil Dutta

Unlike the conventional model of transition metal catalysis, ligands in metal–ligand cooperative (or bifunctional) catalysis are involved in the substrate activations. Such processes have offered unique mechanistic understandings and led...

Synthesis ◽  
2018 ◽  
Vol 50 (20) ◽  
pp. 3974-3996 ◽  
Author(s):  
Josep Cornella ◽  
Matthew O’Neill

While the advent of transition-metal catalysis has undoubtedly transformed synthetic chemistry, problems persist with the introduction of secondary and tertiary alkyl nucleophiles into C(sp2) aryl electrophiles. Complications arise from the delicate organometallic intermediates typically invoked by such processes, from which competition between the desired reductive elimination event and the deleterious β-H elimination pathways can lead to undesired isomerization of the incoming nucleophile. Several methods have integrated distinct combinations of metal, ligand, nucleophile, and electrophile to provide solutions to this problem. Despite substantial progress, refinements to current protocols will facilitate the realization of complement reactivity and improved functional group tolerance. These issues have become more pronounced in the context of green chemistry and sustainable catalysis, as well as by the current necessity to develop robust, reliable cross-couplings beyond less explored C(sp2)–C(sp2) constructs. Indeed, the methods discussed herein and the elaborations thereof enable an ‘unlocking’ of accessible topologically enriched chemical space, which is envisioned to influence various domains of application.1 Introduction2 Mechanistic Considerations3 Magnesium Nucleophiles4 Zinc Nucleophiles5 Boron Nucleophiles6 Other Nucleophiles7 Tertiary Nucleophiles8 Reductive Cross-Coupling with in situ Organometallic Formation9 Conclusion


2021 ◽  
Author(s):  
Pratheepkumar Annamalai ◽  
Ke‐Chien Liu ◽  
Satpal Singh Badsara ◽  
Chin‐Fa Lee

Author(s):  
Ke-Yin Ye ◽  
Jun-Song Zhong ◽  
Yi Yu ◽  
Zhaojiang Shi

The merger of transition-metal catalysis and electrochemistry has been emerging as a very versatile and robust synthetic tool in organic synthesis. Like in their non-electrochemical variants, ligands also play crucial...


Synthesis ◽  
2020 ◽  
Author(s):  
Yan-Wei Zhao ◽  
Shun-Yi Wang ◽  
Xin-Yu Liu ◽  
Tian Jiang ◽  
Weidong Rao

AbstractA synthesis of benzothiazole derivatives through the reaction of 2-halo-N-allylanilines with K2S in DMF is developed. The trisulfur radical anion S3·–, which is generated in situ from K2S in DMF, initiates the reaction without transition-metal catalysis or other additives. In addition, two C–S bonds are formed and heteroaromatization of benzothiazole is triggered by radical cyclization and H-shift.


2019 ◽  
Vol 377 (6) ◽  
Author(s):  
Samson Afewerki ◽  
Armando Córdova

AbstractThe concept of merging enamine activation catalysis with transition metal catalysis is an important strategy, which allows for selective chemical transformations not accessible without this combination. The amine catalyst activates the carbonyl compounds through the formation of a reactive nucleophilic enamine intermediate and, in parallel, the transition metal activates a wide range of functionalities such as allylic substrates through the formation of reactive electrophilic π-allyl-metal complex. Since the first report of this strategy in 2006, considerable effort has been devoted to the successful advancement of this technology. In this chapter, these findings are highlighted and discussed.


2015 ◽  
Vol 13 (21) ◽  
pp. 5844-5847 ◽  
Author(s):  
K. G. M. Kou ◽  
V. M. Dong

Sulfoxides are uncommon substrates for transition-metal catalysis due to their propensity to inhibit catalyst turnover. We have developed the first DKR of racemic allylic sulfoxides where rhodium catalyzed both sulfoxide epimerization and alkene hydrogenation.


2012 ◽  
Vol 48 (24) ◽  
pp. 2929 ◽  
Author(s):  
Charlotte Hollingworth ◽  
Véronique Gouverneur

Sign in / Sign up

Export Citation Format

Share Document