Kinetics of Factor X Activation by Factor IXa the Effects of Phospholipid and Factor VIIIa

1979 ◽  
Author(s):  
G.V. Dieyen ◽  
J. Rosing ◽  
G. Tans ◽  
H.C. Hemker

The kinetics of factor X activation by activated clotting factor IXa was measured either in the presence or absence of phospholipid, Ca-ions and factor VIIIa. This study was carried out with purified bovine clotting factors. The rate of factor Xa formation was measured using the chromogenic substrate S 2222. Both the Km for factor X and the Vmax of factor Xa formation were determined for different compositions of the factor X activating complex in order to get more insight in the role of phospholipid, Ca2+ and factor VIII in factor X activation. With factor IXa alone, the activation of factor X is a very inefficient process. The presence of phospholipids predominantly lowers the Km for factor X while in contrast factor VIIIa mainly increases the Vmax of factor Xa formation. The implications of these findings for the mechanism of, factor X activation in the intrinsic pathway will be discussed.

Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1028-1038 ◽  
Author(s):  
MB Hultin

Abstract The precise quantitation of activated factors in human factor IX concentrates has been accomplished with the use of recently developed, specific assays for factors IXa, Xa, and thrombin. The assay for factor IXa, which measures the initial rate of 3H-factor-X activation, was shown to be specific for factor IXa in the concentrates. Activated factor IX concentrates contained 1.0–2.3 microgram/ml of factor IXa; whereas the assays of unactivated concentrates were negative (less than 0.2 microgram/ml). The assays of factor Xa and thrombin, which measure the initial rate of p-nitroaniline release from S-2222 and S-2238, respectively, showed similar small amounts of factor Xa (4–34 ng/ml) and thrombin (12–76 ng/ml) in the activated and unactivated concentrates. The nonactivated partial thromboplastin time of the concentrates correlated significantly with the factor IXa content, but not with factor Xa or thrombin. Antithrombin III antigen in 3 of 4 concentrates was several-fold higher than antithrombin III activity, suggesting the presence of antithrombin III complexed with activated factors. These results support the hypothesis that the degree of activation of factor IX concentrates is related primarily to the concentration of factor IXa, which may be responsible for the thrombogenicity of these concentrates in some clinical settings.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 398-405 ◽  
Author(s):  
R Rawala-Sheikh ◽  
SS Ahmad ◽  
DM Monroe ◽  
HR Roberts ◽  
PN Walsh

To study the requirements for factor-IXa binding to platelets and factor-X activation, we examined the consequences of chemical modification (factor IXMOD) or enzymatic removal (factor IXDES) of gamma-carboxyglutamic acid (Gla) residues. In the presence of factor VIIIa and factor X, there were 344 (+/- 52) binding sites/platelet for factor IXaMOD (apparent dissociation constant [kdapp] = 4.5 +/- 0.9 nmol/L) and 275 (+/- 35) sites/platelet for factor IXaDES (kdapp = 5.0 +/- 0.8 nmol/L) compared with 580 (+/-65) sites/platelet for normal factor IXa (factor IXaN) (kdapp = 0.61 +/- 0.1 nmol/L) and 300 (+/-62) sites/platelet for factor IX (kdapp = 2.9 +/- 0.29 nmol/L). The concentrations of factor IXaN, factor IXaMOD and factor IXaDES required for half-maximal rates of factor-Xa formation were 0.67 nmol/L, 3.5 nmol/L, and 6.7 nmol/L. Whereas maximal velocities (Vmax) of factor Xa formation by factor IXaMOD (approximately 0.8 nmol/L.min-1) and factor IXaN (approximately 10.5 nmol/L.min-1), turnover numbers (kcat expressed as moles of factor Xa formed per minute per mole of factor IXa bound), and values of catalytic efficiency (kcat/Km) were normal, indicating that the decreased rates of factor X activation observed with factor IXaMOD and factor IXaDES are solely a consequence of the abnormal binding of these proteins to thrombin-activated platelets in the presence of factor VIIIa and factor X. Thus, factor IXa binding to platelets is mediated in part, but not exclusively, by high-affinity Ca2+ binding sites in the Gla domain of factor IX.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 398-405 ◽  
Author(s):  
R Rawala-Sheikh ◽  
SS Ahmad ◽  
DM Monroe ◽  
HR Roberts ◽  
PN Walsh

Abstract To study the requirements for factor-IXa binding to platelets and factor-X activation, we examined the consequences of chemical modification (factor IXMOD) or enzymatic removal (factor IXDES) of gamma-carboxyglutamic acid (Gla) residues. In the presence of factor VIIIa and factor X, there were 344 (+/- 52) binding sites/platelet for factor IXaMOD (apparent dissociation constant [kdapp] = 4.5 +/- 0.9 nmol/L) and 275 (+/- 35) sites/platelet for factor IXaDES (kdapp = 5.0 +/- 0.8 nmol/L) compared with 580 (+/-65) sites/platelet for normal factor IXa (factor IXaN) (kdapp = 0.61 +/- 0.1 nmol/L) and 300 (+/-62) sites/platelet for factor IX (kdapp = 2.9 +/- 0.29 nmol/L). The concentrations of factor IXaN, factor IXaMOD and factor IXaDES required for half-maximal rates of factor-Xa formation were 0.67 nmol/L, 3.5 nmol/L, and 6.7 nmol/L. Whereas maximal velocities (Vmax) of factor Xa formation by factor IXaMOD (approximately 0.8 nmol/L.min-1) and factor IXaN (approximately 10.5 nmol/L.min-1), turnover numbers (kcat expressed as moles of factor Xa formed per minute per mole of factor IXa bound), and values of catalytic efficiency (kcat/Km) were normal, indicating that the decreased rates of factor X activation observed with factor IXaMOD and factor IXaDES are solely a consequence of the abnormal binding of these proteins to thrombin-activated platelets in the presence of factor VIIIa and factor X. Thus, factor IXa binding to platelets is mediated in part, but not exclusively, by high-affinity Ca2+ binding sites in the Gla domain of factor IX.


1981 ◽  
Author(s):  
F Ofosu ◽  
A Cerskus ◽  
J Hirsh ◽  
M A Blajchman

The predominant mode of the anticoagulant action of heparin is considered to be the enhancement of the rate of inactivation, by antithrombin-III, of several activated clotting factors. Recent evidence, however, suggests that heparin can reversibly inhibit the activation of prothrombin and factor X even in the absence of anti- thrombin-III. This antithrombin-III-independent action of heparin has been demonstrated only in purified clotting factor systems. In order to determine the significance of the antithrombin-III-independent effects of heparin in plasma, the effects of heparin on the activation of factor X and prothrombin were studied in antithrombin-III- depleted plasma produced by affinity chromatography of normal plasma on heparin-Sepharose. Heparin partially inhibited the activation of factor X and prothrombin on the addition of either factor IXa or factor Xa in anti- thrombin-III-depleted plasma. This inhibition was demonstrable only when high concentrations (1 or 10 units/ ml) of heparin were used. In contrast, when as little as 1% antithrombin-III was added to antithrombin-III-depleted plasma containing 1.0 u of heparin per ml of plasma, no factor X or prothrombin activation could be demonstrated. Thus, it appears that in comparison with the magnitude of the antithrombin-III-dependent effect, the contribution of the antithrombin-III-independent anticoagulant effect of heparin on the activation of factor X and prothrombin in normal plasma is limited.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1761-1770
Author(s):  
P Neuenschwander ◽  
J Jesty

Two aspects of the activation of factor X by the intrinsic clotting pathway have been studied in purified human systems, in the presence of either purified phosphatidylserine:phosphatidylcholine vesicles (PS:PC) or platelets activated with ionophore A23187: (1) the activation of factor VIII by factor Xa and by thrombin, and (2) the activation of factor X by the factor IXa/VIIIa complex. Factor VIII activation by thrombin was unaffected in either rate or extent by the presence of PS:PC or activated platelets. In contrast, factor VIII activation by factor Xa required either PS:PC or platelets. The products of optimal factor VIII activation by the two enzymes, designated factor VIIIa(T) and factor VIIIa(Xa), are kinetically different in the activation of factor X by factor IXa, factor VIIIa(T) being approximately twice as active (in factor X activation) as factor VIIIa(Xa) in the presence of PS:PC or platelets. Factor VIIIa(Xa) can be converted to the more active VIIIa(T) by thrombin treatment, but the activity of factor VIIIa(T) is unchanged by factor Xa treatment. Factor X activation was also studied with optimally activated factor VIIIa(T), in the presence of PS:PC or activated platelets, as a function of factor IXa concentration in order to determine the apparent dissociation constant for the factor IXa-VIIIa interaction in the two cases. Activated platelets increased the apparent affinity more than fivefold.


Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1028-1038 ◽  
Author(s):  
MB Hultin

The precise quantitation of activated factors in human factor IX concentrates has been accomplished with the use of recently developed, specific assays for factors IXa, Xa, and thrombin. The assay for factor IXa, which measures the initial rate of 3H-factor-X activation, was shown to be specific for factor IXa in the concentrates. Activated factor IX concentrates contained 1.0–2.3 microgram/ml of factor IXa; whereas the assays of unactivated concentrates were negative (less than 0.2 microgram/ml). The assays of factor Xa and thrombin, which measure the initial rate of p-nitroaniline release from S-2222 and S-2238, respectively, showed similar small amounts of factor Xa (4–34 ng/ml) and thrombin (12–76 ng/ml) in the activated and unactivated concentrates. The nonactivated partial thromboplastin time of the concentrates correlated significantly with the factor IXa content, but not with factor Xa or thrombin. Antithrombin III antigen in 3 of 4 concentrates was several-fold higher than antithrombin III activity, suggesting the presence of antithrombin III complexed with activated factors. These results support the hypothesis that the degree of activation of factor IX concentrates is related primarily to the concentration of factor IXa, which may be responsible for the thrombogenicity of these concentrates in some clinical settings.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1761-1770 ◽  
Author(s):  
P Neuenschwander ◽  
J Jesty

Abstract Two aspects of the activation of factor X by the intrinsic clotting pathway have been studied in purified human systems, in the presence of either purified phosphatidylserine:phosphatidylcholine vesicles (PS:PC) or platelets activated with ionophore A23187: (1) the activation of factor VIII by factor Xa and by thrombin, and (2) the activation of factor X by the factor IXa/VIIIa complex. Factor VIII activation by thrombin was unaffected in either rate or extent by the presence of PS:PC or activated platelets. In contrast, factor VIII activation by factor Xa required either PS:PC or platelets. The products of optimal factor VIII activation by the two enzymes, designated factor VIIIa(T) and factor VIIIa(Xa), are kinetically different in the activation of factor X by factor IXa, factor VIIIa(T) being approximately twice as active (in factor X activation) as factor VIIIa(Xa) in the presence of PS:PC or platelets. Factor VIIIa(Xa) can be converted to the more active VIIIa(T) by thrombin treatment, but the activity of factor VIIIa(T) is unchanged by factor Xa treatment. Factor X activation was also studied with optimally activated factor VIIIa(T), in the presence of PS:PC or activated platelets, as a function of factor IXa concentration in order to determine the apparent dissociation constant for the factor IXa-VIIIa interaction in the two cases. Activated platelets increased the apparent affinity more than fivefold.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1226-1231 ◽  
Author(s):  
TB McNeely ◽  
MJ Griffith

Abstract The effects of heparin on the activation of blood coagulation factors IX and X in contact-activated plasma were determined in the present study. In the presence and absence of 0.5 U/mL heparin, the amounts of factor IX that were cleaved 30 minutes after the addition of calcium and phospholipid to plasma exposed to glass (ie, contact activated) were essentially identical. In the absence of heparin, however, the plasma clotting time was between three and four minutes, while in the presence of heparin, the clotting time was approximately 40 minutes. More factor IXa was inhibited by antithrombin III in the presence of heparin than in its absence, but factor IXa levels sufficient for factor X activation appeared to be present in the heparinized plasma. Neither an increase in factor Xa nor a decrease in factor X was detected, however, in heparinized plasma. We conclude that the step in the intrinsic pathway of coagulation that is inhibited in the presence of heparin is at the level of factor X activation.


1995 ◽  
Vol 310 (2) ◽  
pp. 427-431 ◽  
Author(s):  
S S Ahmad ◽  
R Rawala ◽  
W F Cheung ◽  
D W Stafford ◽  
P N Walsh

To study the structural requirements for factor IXa binding to platelets, we have carried out equilibrium binding studies with human factor IXa after replacing the second epidermal growth factor (EGF) domain by the corresponding polypeptide region of factor X. The chimeric protein, factor IX(Xegf2), and the wild-type, factor IXwt, produced in embryonic kidney cells 293 were radiolabelled with 125I and activated with factor XIa. Direct binding studies with thrombin-activated platelets showed normal stoichiometry and affinity of binding of factor IXawt in the presence of factor VIIIa (2 units/ml) and factor X (1.5 microM). However, under similar experimental conditions, factor IXa(Xegf2) was bound to a smaller number of sites (396 sites/platelet) with decreased affinity, i.e. a dissociation constant (Kd) of 1.4 nM, compared with normal factor IXa, factor IXaN (558 sites/platelet; Kd 0.67 nM), or factor IXawt (590 sites/platelet; Kd 0.61 nM). The concentrations of factor IXaN and factor IXawt required for half-maximal rates of factor-X activation were 0.63 nM and 0.7 nM, indicating a close correspondence of the Kd, app. for binding of factor IXawt to the factor-X activating complex on activated platelets to the Kd obtained in equilibrium binding studies. In contrast, kinetic parameters for factor-X activation by factor IXa(Xegf2) showed a decreased affinity (Kd 1.5 nM), in agreement with results of binding studies. These studies with factor IX(Xegf2) suggest that the EGF-2 domain may be important for specific high-affinity factor IXa binding to platelets in the presence of factor VIIIa and factor X.


1999 ◽  
Vol 339 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Joost A. KOLKMAN ◽  
Peter J. LENTING ◽  
Koen MERTENS

The contribution of the Factor IX catalytic domain to Factor VIIIa binding has been evaluated by functional analysis of Factor IX variants with substitutions in α-helix region 333–339 and region 301–303. These regions were found to play a prominent role in Factor VIIIa-dependent stimulation of Factor X activation, but do not contribute to the high-affinity interaction with Factor VIIIa light chain. We propose that complex assembly between Factor IXa and Factor VIIIa involves multiple interactive sites that are located on different domains of these proteins.


Sign in / Sign up

Export Citation Format

Share Document