scholarly journals Activated clotting factors in factor IX concentrates

Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1028-1038 ◽  
Author(s):  
MB Hultin

Abstract The precise quantitation of activated factors in human factor IX concentrates has been accomplished with the use of recently developed, specific assays for factors IXa, Xa, and thrombin. The assay for factor IXa, which measures the initial rate of 3H-factor-X activation, was shown to be specific for factor IXa in the concentrates. Activated factor IX concentrates contained 1.0–2.3 microgram/ml of factor IXa; whereas the assays of unactivated concentrates were negative (less than 0.2 microgram/ml). The assays of factor Xa and thrombin, which measure the initial rate of p-nitroaniline release from S-2222 and S-2238, respectively, showed similar small amounts of factor Xa (4–34 ng/ml) and thrombin (12–76 ng/ml) in the activated and unactivated concentrates. The nonactivated partial thromboplastin time of the concentrates correlated significantly with the factor IXa content, but not with factor Xa or thrombin. Antithrombin III antigen in 3 of 4 concentrates was several-fold higher than antithrombin III activity, suggesting the presence of antithrombin III complexed with activated factors. These results support the hypothesis that the degree of activation of factor IX concentrates is related primarily to the concentration of factor IXa, which may be responsible for the thrombogenicity of these concentrates in some clinical settings.

Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1028-1038 ◽  
Author(s):  
MB Hultin

The precise quantitation of activated factors in human factor IX concentrates has been accomplished with the use of recently developed, specific assays for factors IXa, Xa, and thrombin. The assay for factor IXa, which measures the initial rate of 3H-factor-X activation, was shown to be specific for factor IXa in the concentrates. Activated factor IX concentrates contained 1.0–2.3 microgram/ml of factor IXa; whereas the assays of unactivated concentrates were negative (less than 0.2 microgram/ml). The assays of factor Xa and thrombin, which measure the initial rate of p-nitroaniline release from S-2222 and S-2238, respectively, showed similar small amounts of factor Xa (4–34 ng/ml) and thrombin (12–76 ng/ml) in the activated and unactivated concentrates. The nonactivated partial thromboplastin time of the concentrates correlated significantly with the factor IXa content, but not with factor Xa or thrombin. Antithrombin III antigen in 3 of 4 concentrates was several-fold higher than antithrombin III activity, suggesting the presence of antithrombin III complexed with activated factors. These results support the hypothesis that the degree of activation of factor IX concentrates is related primarily to the concentration of factor IXa, which may be responsible for the thrombogenicity of these concentrates in some clinical settings.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1226-1231 ◽  
Author(s):  
TB McNeely ◽  
MJ Griffith

Abstract The effects of heparin on the activation of blood coagulation factors IX and X in contact-activated plasma were determined in the present study. In the presence and absence of 0.5 U/mL heparin, the amounts of factor IX that were cleaved 30 minutes after the addition of calcium and phospholipid to plasma exposed to glass (ie, contact activated) were essentially identical. In the absence of heparin, however, the plasma clotting time was between three and four minutes, while in the presence of heparin, the clotting time was approximately 40 minutes. More factor IXa was inhibited by antithrombin III in the presence of heparin than in its absence, but factor IXa levels sufficient for factor X activation appeared to be present in the heparinized plasma. Neither an increase in factor Xa nor a decrease in factor X was detected, however, in heparinized plasma. We conclude that the step in the intrinsic pathway of coagulation that is inhibited in the presence of heparin is at the level of factor X activation.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1226-1231 ◽  
Author(s):  
TB McNeely ◽  
MJ Griffith

The effects of heparin on the activation of blood coagulation factors IX and X in contact-activated plasma were determined in the present study. In the presence and absence of 0.5 U/mL heparin, the amounts of factor IX that were cleaved 30 minutes after the addition of calcium and phospholipid to plasma exposed to glass (ie, contact activated) were essentially identical. In the absence of heparin, however, the plasma clotting time was between three and four minutes, while in the presence of heparin, the clotting time was approximately 40 minutes. More factor IXa was inhibited by antithrombin III in the presence of heparin than in its absence, but factor IXa levels sufficient for factor X activation appeared to be present in the heparinized plasma. Neither an increase in factor Xa nor a decrease in factor X was detected, however, in heparinized plasma. We conclude that the step in the intrinsic pathway of coagulation that is inhibited in the presence of heparin is at the level of factor X activation.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 398-405 ◽  
Author(s):  
R Rawala-Sheikh ◽  
SS Ahmad ◽  
DM Monroe ◽  
HR Roberts ◽  
PN Walsh

To study the requirements for factor-IXa binding to platelets and factor-X activation, we examined the consequences of chemical modification (factor IXMOD) or enzymatic removal (factor IXDES) of gamma-carboxyglutamic acid (Gla) residues. In the presence of factor VIIIa and factor X, there were 344 (+/- 52) binding sites/platelet for factor IXaMOD (apparent dissociation constant [kdapp] = 4.5 +/- 0.9 nmol/L) and 275 (+/- 35) sites/platelet for factor IXaDES (kdapp = 5.0 +/- 0.8 nmol/L) compared with 580 (+/-65) sites/platelet for normal factor IXa (factor IXaN) (kdapp = 0.61 +/- 0.1 nmol/L) and 300 (+/-62) sites/platelet for factor IX (kdapp = 2.9 +/- 0.29 nmol/L). The concentrations of factor IXaN, factor IXaMOD and factor IXaDES required for half-maximal rates of factor-Xa formation were 0.67 nmol/L, 3.5 nmol/L, and 6.7 nmol/L. Whereas maximal velocities (Vmax) of factor Xa formation by factor IXaMOD (approximately 0.8 nmol/L.min-1) and factor IXaN (approximately 10.5 nmol/L.min-1), turnover numbers (kcat expressed as moles of factor Xa formed per minute per mole of factor IXa bound), and values of catalytic efficiency (kcat/Km) were normal, indicating that the decreased rates of factor X activation observed with factor IXaMOD and factor IXaDES are solely a consequence of the abnormal binding of these proteins to thrombin-activated platelets in the presence of factor VIIIa and factor X. Thus, factor IXa binding to platelets is mediated in part, but not exclusively, by high-affinity Ca2+ binding sites in the Gla domain of factor IX.


1988 ◽  
Vol 263 (30) ◽  
pp. 15313-15318
Author(s):  
J Pieters ◽  
G Willems ◽  
H C Hemker ◽  
T Lindhout

Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 398-405 ◽  
Author(s):  
R Rawala-Sheikh ◽  
SS Ahmad ◽  
DM Monroe ◽  
HR Roberts ◽  
PN Walsh

Abstract To study the requirements for factor-IXa binding to platelets and factor-X activation, we examined the consequences of chemical modification (factor IXMOD) or enzymatic removal (factor IXDES) of gamma-carboxyglutamic acid (Gla) residues. In the presence of factor VIIIa and factor X, there were 344 (+/- 52) binding sites/platelet for factor IXaMOD (apparent dissociation constant [kdapp] = 4.5 +/- 0.9 nmol/L) and 275 (+/- 35) sites/platelet for factor IXaDES (kdapp = 5.0 +/- 0.8 nmol/L) compared with 580 (+/-65) sites/platelet for normal factor IXa (factor IXaN) (kdapp = 0.61 +/- 0.1 nmol/L) and 300 (+/-62) sites/platelet for factor IX (kdapp = 2.9 +/- 0.29 nmol/L). The concentrations of factor IXaN, factor IXaMOD and factor IXaDES required for half-maximal rates of factor-Xa formation were 0.67 nmol/L, 3.5 nmol/L, and 6.7 nmol/L. Whereas maximal velocities (Vmax) of factor Xa formation by factor IXaMOD (approximately 0.8 nmol/L.min-1) and factor IXaN (approximately 10.5 nmol/L.min-1), turnover numbers (kcat expressed as moles of factor Xa formed per minute per mole of factor IXa bound), and values of catalytic efficiency (kcat/Km) were normal, indicating that the decreased rates of factor X activation observed with factor IXaMOD and factor IXaDES are solely a consequence of the abnormal binding of these proteins to thrombin-activated platelets in the presence of factor VIIIa and factor X. Thus, factor IXa binding to platelets is mediated in part, but not exclusively, by high-affinity Ca2+ binding sites in the Gla domain of factor IX.


1987 ◽  
Author(s):  
J Pieters ◽  
G willems ◽  
H C Hemker ◽  
T Lindout

The heparin-catalyzed inactivation of activated coagulation factors by antithrombin III (AT III) has mostly been studied for isolated serine proteases. However, we decided to study the action of heparin and AT III under more physiological conditions, i.e. during the activation of factor X by factor IXa in the presence of phospholipid and calcium. Thereby we made use of a mathematical model which describes the generation of factor Xa by factor IXa, phospholipid and calcium in the presence of AT III and heparin. Fitting the experimental factor Xa generation curve to a set of equations gave the pseudo-first-order rate constants of factor Xa and factor IXa. In a first approach we examined the effect of AT III alone on factor X activation. We found that the second order rate constant of inhibition of formed factor Xa was 2 x 10 5M-1min-1 , whereas that of factor Xa in free solution was 5 x 10 5M-1min-1 , indicating that phospholipid-bound factor X competes with AT III for factor Xa. The second order rate constant of inhibiton of factor IXa, either in the presence or absence of accessory components, was 8 x 103 M-1min-1. Unfractionated heparin (UFH; 168 USP units/mg) was found to stimulate the inhibition of generated factor Xa by AT III (200 nM) with 0.1 min-1 per nM of UFH, and a synthetic pentasaccharide (PS; 4000 anti-Xa units/mg) stimulated this inhibition with only 0.03 min-1per nM. Due to the presence of phospholipid-bound factor X this stimulation was 4-fold less when compared with factor Xa in free solution. At UFH concentrations higher than 3 nM, and PS concentrations exceeding 10 nM hardly any active factor Xa generation could be measured because of the rapid inactivation of factor Xa whereas factor IXa was not inhibited. Using a factor IXa assay we found that PS, even at relatively high concentrations, had no effect on factor IXa inactivation by AT III (200 nM), both in the presence and absence of accessory components. The inactivation of factor IXa by AT III (200 nM) during factor X activation was stimulated by UFH with 1.6 x 10 -2min-1 per nM of UFH. Surprisingly, this was 4-fold more when compared with factor IXa in the absence of accessory components. We established that calcium stimulates the heparin-dependent inhibition of factor IXa.


1979 ◽  
Author(s):  
G.V. Dieyen ◽  
J. Rosing ◽  
G. Tans ◽  
H.C. Hemker

The kinetics of factor X activation by activated clotting factor IXa was measured either in the presence or absence of phospholipid, Ca-ions and factor VIIIa. This study was carried out with purified bovine clotting factors. The rate of factor Xa formation was measured using the chromogenic substrate S 2222. Both the Km for factor X and the Vmax of factor Xa formation were determined for different compositions of the factor X activating complex in order to get more insight in the role of phospholipid, Ca2+ and factor VIII in factor X activation. With factor IXa alone, the activation of factor X is a very inefficient process. The presence of phospholipids predominantly lowers the Km for factor X while in contrast factor VIIIa mainly increases the Vmax of factor Xa formation. The implications of these findings for the mechanism of, factor X activation in the intrinsic pathway will be discussed.


1981 ◽  
Author(s):  
G Tans ◽  
T Janssen-Claessen ◽  
G v Dieijen ◽  
J Rosing ◽  
H C Hemker

Activation of factor IX by factor XIa occurs via an intermediate which has no esterase activity towards synthetic arginine esters or coagulant activity as determined with a clotting assay. Factor IXa can be active site titrated using p-nitrophenyl-p1-guanidinobenzoate (p-NPGB) as a titrant. The rate and equilibrium constants describing the active site titration will be presented. To determine whether the intermediate occurring during factor IX activation by factor XIa has its active site exposed for p-NPGB the time course of activation of factor IX by factor XIa was followed l) by active site titration of the active sites generated, 2) by gel- electrophoretic analysis in the presence of sodium dodecyl sulfate, 3) by a clotting assay for factor IXa and 4) by measurement of factor IXa using a spectrophotomefric assay. It will be shown that the intermediate occurring during activation of factor IX by factor XIa does not interact with p-NPGB indicating that the active site is not available in the intermediate.Factor IXa can be determined spectrophotometrically by measurement of the rate of factor X activation by factor IXa in the presence of phospholipid and CaCl2. The factor Xa generated is measured using the chromogenic substrate S222. Since human factor IX can be activated with bovine factor XIa and since human factor IXa can activate bovine factorX the bovine clotting factors factor XIa and factor X can be used to construct an assay for factor fx in plasma samples. Experiments will be presented in which it is shown that the spec- trophotometric assay for human factor IXa can be used to determine levels of factor IX in plasma samples of healthy individuals, in plasma samples deficient in various clotting factors and in plasma samples from patients under anti-coagulant therapy. The results are in agreement with a factor IX clotting test.


Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1303-1308 ◽  
Author(s):  
P Lollar ◽  
GJ Knutson ◽  
DN Fass

Abstract The activation of porcine factor X by an enzymatic complex consisting of activated factor IX (factor IXa), thrombin-activated factor VIII:C (factor VIII:Ca), phospholipid vesicles, and calcium was studied in the presence of an irreversible inhibitor of factor Xa, 5-dimethylamino- naphthalene-1-sulfonyl-glutamyl-glycyl-arginyl- chloro met hyl ketone ( DEGR -CK). The formation of factor Xa was measured continuously by monitoring the increase in solution fluorescence intensity that occurs upon formation of DEGR -factor Xa. Omission of any component from the enzymatic complex reduced the reaction rate to a negligible level. In the presence of fixed excess factor IXa, the velocity of factor X activation was linearly dependent on the concentration of factor VIII:C, and thus, provided a plasma-free assay of factor VIII:C. Activation of factor VIII:C by 0.1 NIH U/ml thrombin in the presence of factor IXa, phospholipid vesicles, and calcium, followed at variable time intervals by the addition of factor X and DEGR -CK, was complete within 5 min, as judged by the fluorometric assay, and resulted in little or no loss of factor VIII:C activity over a period of 20 min; whereas, activation in the absence of either IXa or phospholipid vesicles decreased the half-life of factor VIII:C to approximately 5 min. Analysis of 125I-factor VIII:C-derived activation peptides by sodium dodecyl sulfate polyacrylamide gel radioelectrophoresis revealed identical results, regardless of whether factor IXa and/or phospholipid vesicles were included in the activation, suggesting that the lability of factor VIII:Ca is not due to a major alteration of its primary structure. We conclude that the activated porcine factor VIII:C molecule is stabilized markedly because of its interaction with factor IXa and phospholipid.


Sign in / Sign up

Export Citation Format

Share Document