Prolonged Exercise at a Constant Load on a Bicycle Ergometer: Ratings of Perceived Exertion and Leg Aches and Pain as well as Measurements of Blood Lactate Accumulation and Heart Rate*

1987 ◽  
Vol 08 (02) ◽  
pp. 109-116 ◽  
Author(s):  
G. Ljunggren ◽  
R. Ceci ◽  
J. Karlsson
1989 ◽  
Vol 66 (6) ◽  
pp. 2710-2716 ◽  
Author(s):  
J. Chwalbinska-Moneta ◽  
R. A. Robergs ◽  
D. L. Costill ◽  
W. J. Fink

The purpose of this study was to investigate the relationship between muscle and blood lactate concentrations during progressive exercise. Seven endurance-trained male college students performed three incremental bicycle ergometer exercise tests. The first two tests (tests I and II) were identical and consisted of 3-min stage durations with 2-min rest intervals and increased by 50-W increments until exhaustion. During these tests, blood was sampled from a hyperemized earlobe for lactate and pH measurement (and from an antecubital vein during test I), and the exercise intensities corresponding to the lactate threshold (LT), individual anaerobic threshold (IAT), and onset of blood lactate accumulation (OBLA) were determined. The test III was performed at predetermined work loads (50 W below OBLA, at OBLA, and 50 W above OBLA), with the same stage and rest interval durations of tests I and II. Muscle biopsies for lactate and pH determination were taken at rest and immediately after the completion of the three exercise intensities. Blood samples were drawn simultaneously with each biopsy. Muscle lactate concentrations increased abruptly at exercise intensities greater than the “below-OBLA” stage [50.5% maximal O2 uptake (VO2 max)] and resembled a threshold. An increase in blood lactate and [H+] also occurred at the below-OBLA stage; however, no significant change in muscle [H+] was observed. Muscle lactate concentrations were highly correlated to blood lactate (r = 0.91), and muscle-to-blood lactate ratios at below-OBLA, at-OBLA, and above-OBLA stages were 0.74, 0.63, 0.96, and 0.95, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 16 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Hiroyuki Imamura ◽  
Yoshitaka Yoshimura ◽  
Kazuhiro Uchida ◽  
Ayumi Tanaka ◽  
Seiji Nishimura ◽  
...  

1998 ◽  
Vol 23 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Dixie L. Thompson ◽  
Keith A. West

A paucity of data exists related to the usefulness of Ratings of Perceived Exertion (RPE) to set exercise intensity in non-laboratory settings. The purpose of this study was to determine if RPE could be used on an outdoor track to generate blood lactate and heart rate (HR) responses similar to those obtained on a treadmill (tm) run. Nine experienced runners (6 males, 3 females; [Formula: see text]) completed a horizontal, incremental tm test. HR, RPE, and lactate were measured for each stage. Subsequently, subjects ran for 30 min on an outdoor track at the RPE corresponding with 2.5 mM lactate during the tm run. Repeated measures ANOVA compared lactate and HR values at 2.5 mM lactate on the tm run and values obtained during the track run. Lactate during the track run was significantly higher (p < .05) than 2.5 mM throughout the 30 min (6.9 ± 2.9, 63 ± 2.9, and 5.8 ± 3.0 mM at 10, 20, and 30 min, respectively). HR at 2.5 mM lactate during the tm run (173 ± 6.1 bpm) was significantly lower (p < .05) than at min 10 and 20 of the track run (182.6 ± 9.3 and 182.9 ± 8.0 bpm, respectively) but not different from min 30 (181.3 ± 10.6 bpm). In summary, it is difficult to generate specific physiological responses using RPE. Key words: RPE, Borg Scale, exercise, lactate, training


1998 ◽  
Vol 86 (3) ◽  
pp. 915-927 ◽  
Author(s):  
Robert A. Robergs ◽  
Selda Bereket ◽  
Melissa A. Knight

Two studies were conducted to assess whether indoor video-assisted cycling influenced a person's quality of exercise (subjectively and quantitatively), compared to indoor cycling alone. In the first study 12 recreationally active subjects completed an initial test of VO2max, and three randomized trials of cycling at 70% VO2max (35 min.) watching a commercial cycling tape (cycle video), a test pattern displayed on the ergometer screen (blank video), or no video. Subjects' ratings of perceived exertion (RPE) and Affect were recorded, and heart rate and oxygen consumption (VO2) were measured during testing. The second study required 12 different subjects first to complete an assessment of VO2max and then two randomized trials (cycle video and no video) on a cycle ergometer where they freely set the intensity of their own exercise. Measurements of VO2, heart rate, blood lactate, power output, RPE, and Affect were recorded during testing. Results of Exp. 1 indicated that subjects' perceived effort equally between the two conditions, yet reported significantly ( p <.05) higher affect at 25 and 35 min. of cycling during the cycle video condition than no video condition. Results of Exp. 2 indicated that despite similar levels of blood lactate, subjects exercised at a significantly higher intensity during the cycle video condition compared to no video condition, with a higher VO2 and heart rate. The data support the use of indoor exercise videos to improve the exercise experience and also to increase the physiological demands of indoor exercise.


1981 ◽  
Vol 112 (2) ◽  
pp. 215-217 ◽  
Author(s):  
IRA JACOBS ◽  
BERTIL SJÖDIN ◽  
PETER KAISER ◽  
JAN KARLSSON

Sign in / Sign up

Export Citation Format

Share Document