Destruction of 1,1,1-Trichloroethane Using Dielectric Barrier Discharge Nonthermal Plasma

2004 ◽  
Vol 130 (3) ◽  
pp. 349-355 ◽  
Author(s):  
Sandeep Agnihotri ◽  
Mark P. Cal ◽  
Justin Prien
Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 511 ◽  
Author(s):  
Wenjun Liang ◽  
Huipin Sun ◽  
Xiujuan Shi ◽  
Yuxue Zhu

In order to make full use of the heat in nonthermal plasma systems and decrease the generation of by-products, a reverse-flow nonthermal plasma reactor coupled with catalyst was used for the abatement of toluene. In this study, the toluene degradation performance of different reactors was compared under the same conditions. The mechanism of toluene abatement by nonthermal plasma coupled with catalyst was explored, combined with the generation of ozone (O3), NO2, and organic by-products during the reaction process. It was found that a long reverse cycle time of the reactor and a short residence time of toluene decreased the internal reactor temperature, which was not beneficial for the degradation of toluene. Compared with the dielectric barrier discharge (DBD) reactor, toluene degradation efficiency in the double dielectric barrier discharge (DDBD) reactor was improved at the same discharge energy level, but the concentrations of NO2 and O3 in the effluent were relatively high; this was improved after the introduction of a catalyst. In the reverse-flow nonthermal plasma reactor coupled with catalyst, the CO2 selectivity was the highest, while the selectivity and amount of NO2 was the lowest and aromatics, acids, and ketones were the main gaseous organic by-products in the effluent. The reverse-flow DBD-catalyst reactor was successful in decreasing organic by-products, while the types of organic by-products in the DDBD reactor were much more than those in the DBD reactor.


Plasma ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 59-91 ◽  
Author(s):  
Emile Salomon Massima Mouele ◽  
Jimoh. O. Tijani ◽  
Milua Masikini ◽  
Ojo. O. Fatoba ◽  
Chuks P. Eze ◽  
...  

Advanced oxidation technologies (AOTs) focusing on nonthermal plasma induced by dielectric barrier discharge are adequate sources of diverse reactive oxygen species (ROS) beneficial for water and wastewater treatment. In this study, indigo, peroxytitanyl sulphate and terephthalic acid methods were used to approximate the concentrations of O3, H2O2 and OH produced in a double cylindrical dielectric barrier discharge (DCDBD) plasma configuration. The effect of pH and scavengers as well as the amount of chemical probes on the generation of oxidants was investigated. The efficiency of the DCDBD reactor was further evaluated using methylene blue (MB) as model pollutant. The results demonstrated that the formation of oxidants O3, H2O2 and OH in the DCDBD reactor was pH-dependent. Furthermore, the presence of scavengers such as phosphates, bicarbonates and carbonates in the solution diminished the amount of OH in the system and hence could impact upon the degree of detoxification of targeted pollutants during water and wastewater treatment. The MB simulated dye was totally decomposed into H2O, dissolved CO2 and simpler aqueous entities. Herein the DCDBD design is an adequate AOT that can be used worldwide for effective decontamination of water and wastewater.


Sign in / Sign up

Export Citation Format

Share Document