oh radicals
Recently Published Documents


TOTAL DOCUMENTS

2081
(FIVE YEARS 591)

H-INDEX

81
(FIVE YEARS 17)

2022 ◽  
Vol 22 (1) ◽  
pp. 371-393
Author(s):  
Baoye Hu ◽  
Jun Duan ◽  
Youwei Hong ◽  
Lingling Xu ◽  
Mengren Li ◽  
...  

Abstract. Because nitrous acid (HONO) photolysis is a key source of hydroxyl (OH) radicals, identifying the atmospheric sources of HONO is essential to enhance the understanding of atmospheric chemistry processes and improve the accuracy of simulation models. We performed seasonal field observations of HONO in a coastal city of southeastern China, along with measurements of trace gases, aerosol compositions, photolysis rate constants (J), and meteorological parameters. The results showed that the average observed concentration of HONO was 0.54 ± 0.47 ppb. Vehicle exhaust emissions contributed an average of 1.45 % to HONO, higher than the values found in most other studies, suggesting an influence from diesel vehicle emissions. The mean conversion frequency of NO2 to HONO in the nighttime was the highest in summer due to water droplets evaporating under high-temperature conditions. Based on a budget analysis, the rate of emission from unknown sources (Runknown) was highest around midday, with values of 4.51 ppb h−1 in summer, 3.51 ppb h−1 in spring, 3.28 ppb h−1 in autumn, and 2.08 ppb h−1 in winter. Unknown sources made up the largest proportion of all sources in summer (81.25 %), autumn (73.99 %), spring (70.87 %), and winter (59.28 %). The photolysis of particulate nitrate was probably a source in spring and summer while the conversion from NO2 to HONO on BC enhanced by light was perhaps a source in autumn and winter. The variation of HONO at night can be exactly simulated based on the HONO / NOx ratio, while the J(NO3-_R) × pNO3- should be considered for daytime simulations in summer and autumn, or 1/4× (J(NO3-_R) × pNO3-) in spring and winter. Compared with O3 photolysis, HONO photolysis has long been an important source of OH except for summer afternoons. Observation of HONO across four seasons with various auxiliary parameters improves the comprehension of HONO chemistry in southeastern coastal China.


2022 ◽  
Vol 9 ◽  
Author(s):  
Lorelis González-López ◽  
Logan Kearney ◽  
Christopher J. Janke ◽  
James Wishart ◽  
Nihal Kanbargi ◽  
...  

The major societal problem of polymeric waste necessitates new approaches to break down especially challenging discarded waste streams. Gamma radiation was utilized in conjunction with varying solvent environments in an attempt to discern the efficacy of radiolysis as a tool for the deliberate degradation of model network polyesters. Our EPR results demonstrated that gamma radiolysis of neat resin and in the presence of four widely used solvents induces glycosidic scissions on the backbone of the polyester chains. EPR results clearly show the formation of alkoxy radicals and C-centered radicals as primary intermediate radiolytic products. Despite the protective role of the phenyl groups on the backbone of the radiation-induced polyester chains, the radiolytic-glycosidic scissions predominate. Among the following three solvents used in this study (water, isopropyl alcohol, and dichloromethane), the highest radiolytic yield of glycosidic scission was achieved using water. The •OH radicals produced in the radiolysis of phenyl unsaturated polyester aqueous suspensions very rapidly abstract H atoms from the methylene group, which is followed by a very rapid glycosidic scission. The lowest glycosidic yield was found in the dichloromethane solutions of these polyester resins due to scavenging by the fast electron capture reactions.


2022 ◽  
pp. 146808742110703
Author(s):  
Shervin Karimkashi ◽  
Mahmoud Gadalla ◽  
Jeevananthan Kannan ◽  
Bulut Tekgül ◽  
Ossi Kaario ◽  
...  

In dual-fuel compression-ignition engines, replacing common fuels such as methane with renewable and widely available fuels such as methanol is desirable. However, a fine-grained understanding of diesel/methanol ignition compared to diesel/methane is lacking. Here, large-eddy simulation (LES) coupled with finite rate chemistry is utilized to study diesel spray-assisted ignition of methane and methanol. A diesel surrogate fuel ( n-dodecane) spray is injected into ambient methane-air or methanol-air mixtures at a fixed lean equivalence ratio [Formula: see text] = 0.5 at various ambient temperatures ([Formula: see text] = 900, 950, 1000 K). The main objectives are to (1) compare the ignition characteristics of diesel/methanol with diesel/methane at different [Formula: see text], (2) explore the relative importance of low-temperature chemistry (LTC) to high-temperature chemistry (HTC), and (3) identify the key differences between oxidation reactions of n-dodecane with methane or methanol. Results from homogeneous reactor calculations as well as 3 + 3 LES are reported. For both DF configurations, increasing [Formula: see text] leads to earlier first- and second-stage ignition. Methanol/ n-dodecane mixture is observed to have a longer ignition delay time (IDT) compared to methane/ n-dodecane, for example ≈ three times longer IDT at [Formula: see text] = 950 K. While the ignition response of methane to [Formula: see text] is systematic and robust, the [Formula: see text] window for n-dodecane/methanol ignition is very narrow and for the investigated conditions, only at 950 K robust ignition is observed. For methanol at [Formula: see text] = 1000 K, the lean ambient mixture autoignites before spray ignition while at [Formula: see text] = 900 K full ignition is not observed after 3 ms, although the first-stage ignition is reported. For methanol, LTC is considerably weaker than for methane and in fully igniting cases, heat release map analysis demonstrates the dominant contribution of HTC to total heat release rate for methanol. Reaction sensitivity analysis shows that stronger consumption of OH radicals by methanol compared to methane leads to the further delay in the spray ignition of n-dodecane/methanol. Finally, a simple and novel approach is developed to estimate IDT in reacting LES using zero-dimensional IDT calculations weighted by residence time from non-reacting LES data.


Author(s):  
Naoki Shirai ◽  
Takuma Kaneko ◽  
Yuto Takamura ◽  
Koichi Sasaki

Abstract We have shown that measuring the surface tension is a useful scheme to examine the plasma-liquid interface in real-time. The surface tension was measured using a method based on the dispersion relation of an acoustic capillary wave excited on the water surface. The surface tension gradually increased with time, when the water surface was irradiated with the outside region of the spatial afterglow of an atmospheric-pressure plasma. The Marangoni effect associated with the localized increase in the surface tension was observed during the plasma irradiation. The surface tension decreased after the termination of the discharge. A correlation was found between the transient decrease in the surface tension and the variation of the OH radical density in the gas phase. No increase in the surface tension was observed in the solution containing a trapping agent for liquid-phase OH radicals. These experimental results suggest that OH radicals act to increase the surface tension. However, the behavior of the surface tension cannot be explained perfectly by considering only the action of OH radicals.


2022 ◽  
Author(s):  
Mike J. Newland ◽  
Camille Mouchel-Vallon ◽  
Richard Valorso ◽  
Bernard Aumont ◽  
Luc Vereecken ◽  
...  

Abstract. Reaction with ozone is an important atmospheric removal process for alkenes. The ozonolysis reaction produces carbonyls, and carbonyl oxides (Criegee intermediates, CI), which can rapidly decompose to yield a range of closed shell and radical products, including OH radicals. Consequently, it is essential to accurately represent the complex chemistry of Criegee intermediates in atmospheric models in order to fully understand the impact of alkene ozonolysis on atmospheric composition. A mechanism construction protocol is presented which is suitable for use in automatic mechanism generation. The protocol defines the critical parameters for describing the chemistry following the initial reaction, namely: the primary carbonyl / CI yields from the primary ozonide fragmentation; the amount of stabilisation of the excited CI (CI*); the unimolecular decomposition pathways, rates and products of the CI; the bimolecular rates and products of atmospherically important reactions of the stabilised CI (SCI). This analysis implicitly predicts the yield of OH from the alkene-ozone reaction. A comprehensive database of experimental OH, SCI and carbonyl yields has been collated using reported values in the literature and used to assess the reliability of the protocol. The protocol provides estimates OH, SCI and carbonyl yields with a root mean square error of 0.13 and 0.12 and 0.14, respectively. Areas where new experimental and theoretical data would improve the protocol and its assessment are identified and discussed.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Paula Muñoz-Flores ◽  
Po S. Poon ◽  
Catherine Sepulveda ◽  
Conchi O. Ania ◽  
Juan Matos

Carbon-doped nanostructured CuMo-based photocatalysts were prepared by solvothermal synthesis. Two thermal treatments—oxidative and inert atmosphere—were used for the synthesis of the catalysts, and the influence of spherical carbon structures upon the crystalline phases on the photocatalytic activity and stability was studied. XRD showed the catalysts are nanostructured and composed by a mixture of copper (Cu, Cu2O, and CuO) and molybdenum (MoO2 and MoO3) crystalline phases. The catalysts were used for the degradation of yellow 5 under solar light. A remarkable leaching of Mo both in dark and under solar irradiation was observed and quantified. This phenomenon was responsible for the loss of photocatalytic activity for the degradation of the dye on the Mo-containing series. Conversely, the Cu-based photocatalysts were stable, with no leaching observed after 6 h irradiation and with a higher conversion of yellow 5 compared with the Mo- and CuMo series. The stability of Cu-based catalysts was attributed to a protective effect of spherical carbon structures formed during the solvothermal synthesis. Regarding the catalysts’ composition, sample Cu4-800-N2 prepared by pyrolysis exhibited up to 4.4 times higher photoactivity than that of the pristine material, which is attributed to a combined effect of an enhanced surface area and micropore volume generated during the pyrolytic treatment due to the presence of the carbon component in the catalyst. Scavenger tests have revealed that the mechanism for tartrazine degradation on irradiated Cu-based catalysts involves successive attacks of •OH radicals.


Author(s):  
Mads Peter Sulbaek Andersen ◽  
Joanna Mae Galang Ohide ◽  
Theis Ivan Sølling ◽  
Ole Nielsen

Long path length FTIR-smog chamber techniques were used to study the title reactions in 700 Torr of N2, oxygen or air diluent at 296 ± 2 K. Values of k(Cl...


2021 ◽  
Author(s):  
R. Masmoudi ◽  
S. Khettaf ◽  
A. Soltani ◽  
A. Dibi ◽  
L. Messaadia ◽  
...  

Abstract In this work, density functional theory is used to study the local reactivity of cephalexin (CLX) to radical attack and explain the mechanism of the reaction between CLX and hydroxyl radical attack leading to degradation byproducts. The reaction between •OH and CLX is supposed to lead to either an addition of a hydroxyl radical or an abstraction of a hydrogen. The results showed that the affinity of cephalexin for addition reactions increases as it passes from the gas to the aqueous phase and decreases as it passes from the neutral to the ionized form. Thermodynamic data confirmed that OH addition radicals (Radd) are thermodynamically favored over H abstraction radicals (Rabs). The ecotoxicity assessments of CLX and its byproducts are estimated from the acute toxicities toward green algae, Daphnia and fish. The formation of byproducts is safe for aquatic organisms, and only one byproduct is harmful to Daphnia.


2021 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Fatemah. H. Alkallas ◽  
Amira Ben Gouider Trabelsi ◽  
Ramzi Nasser ◽  
Susana Fernandez ◽  
Ji-Ming Song ◽  
...  

Chromium (Cr)-doped zinc oxide (ZnO) nanorods with wurtzite hexagonal structure were prepared through a thermal decomposition technique. The concentration effect of the Cr doping on the structural, morphological, and optical properties of the ZnO nanorods was established by correlating various measurements: transmission electron microscopy (TEM), photoluminescence (PL), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and several UV-visible studies. The obtained nanorods were investigated as photocatalysts for the photodegradation process of methyl orange (MO), under UV-vis light illumination. Different weights and time intervals were studied. A 99.8% photodegradation of MO was obtained after 100 min in the presence of 1 wt.% Cr III acetate hydroxide and zinc acetate dehydrate “ZnO-Cr1”. The kinetic rate constant of the reaction was found to be equal to 4.451 × 10−2 min−1 via a pseudo-first order rate model. Scavenger radicals demonstrated the domination of OH• radicals by those of O2•− superoxide species during the photodegradation. The interstitial oxygen site Oi is proposed to play a key role in the generation of holes in the valence band under visible irradiation. The ZnO-Cr1 photocatalyst displayed good cycling stability and reusability.


2021 ◽  
Author(s):  
Majda Mekic ◽  
Thomas Schaefer ◽  
Hartmut Herrmann

<p>Anthropogenic and biogenic sources produce numerous primary emitted gases, organic compounds, and aerosols in the atmosphere. An important group of such compounds are α, β-unsaturated carbonyl molecules, which can be formed in the atmosphere due to their secondary origin, including oxidation of their precursors such as hydrocarbons with common atmospheric oxidants such as hydroxyl radicals (‧OH). Since those compounds contain at least one double bond and one carbonyl group, they are characterized as water-soluble molecules, which can diffuse on the cloud droplets’ surface and undergo a phase transfer from the gas phase to the atmospheric aqueous phase. In the latter, the oxidized organic compounds can contribute to aerosol mass production through in-cloud processes, yielding aqueous phase secondary organic aerosols (aqSOA). Due to their strong photochemical behavior, the development of a new analytical approach for evaluating the OH radical kinetics in the aqueous phase under dark conditions was essential. One of the most studied non-photolytic reactions is Fenton chemistry (Fe(II)/H<sub>2</sub>O<sub>2</sub>), which serves as an OH radical source in the dark in the atmospheric aqueous phase after catalytic decomposition of H<sub>2</sub>O<sub>2</sub> in the presence of Fe(II) at acidic pH values. In a typical experiment, temperature-dependent second-order rate constants of OH radicals with unsaturated dialdehydes, such as (1) crotonaldehyde, and (2) 1,4-butenedial, were determined in a bulk reactor by using the competition kinetics method. In the newly developed method, the role of radical scavenger was performed by isotopically labeled 2-propanol (d8), while the OH-initiated oxidation produces deuterated acetone (d6), being analyzed with GC-MS after derivatization. The findings from our research will be incorporated in the CAPRAM model to explain discrepancies between experimentally observed and predicted aqSOA properties.</p>


Sign in / Sign up

Export Citation Format

Share Document