Water Level Observations and Short-Term Predictions Including Meteorological Events for Entrance of Galveston Bay, Texas

Author(s):  
Daniel T. Cox ◽  
Philippe Tissot ◽  
Patrick Michaud
Keyword(s):  
Author(s):  
Masaomi KIMURA ◽  
Takahiro ISHIKAWA ◽  
Naoto OKUMURA ◽  
Issaku AZECHI ◽  
Toshiaki IIDA

2007 ◽  
Vol 64 (12) ◽  
pp. 1646-1655 ◽  
Author(s):  
Hélène Glémet ◽  
Marco A Rodríguez

Shallow fluvial lakes are heterogeneous ecosystems in which marked spatio-temporal variation renders difficult the analysis of key ecological processes, such as growth. In this study, we used generalized additive modelling of the RNA/DNA ratio, an index of short-term growth, to investigate the influence of environmental variables and spatio-temporal variation on growth of yellow perch (Perca flavescens) in Lake St. Pierre, Quebec, Canada. Temperature and water level had seemingly stronger effects on short-term growth than seasonal change or spatial variation between and along the lakeshores. Consistent with previous studies, the maximum RNA/DNA ratio was found at 20.5 °C, suggesting that our approach provides a useful tool for estimating thermal optima for growth in the field. The RNA/DNA ratio showed a positive relationship with water level, as predicted by the flood pulse concept, a finding with implications for ecosystem productivity in fluvial lakes. The RNA/DNA ratio was more variable along the north than the south shore, possibly reflecting exposure to more differentiated water masses. The negative influence of both high temperatures and low water levels on growth points to potential impacts of climatic change on fish production in shallow fluvial lakes.


2020 ◽  
Vol 223 (2) ◽  
pp. 1288-1303
Author(s):  
K Strehlow ◽  
J Gottsmann ◽  
A Rust ◽  
S Hautmann ◽  
B Hemmings

Summary Aquifers are poroelastic bodies that respond to strain by changes in pore pressure. Crustal deformation due to volcanic processes induces pore pressure variations that are mirrored in well water levels. Here, we investigate water level changes in the Belham valley on Montserrat over the course of 2 yr (2004–2006). Using finite element analysis, we simulate crustal deformation due to different volcanic strain sources and the dynamic poroelastic aquifer response. While some additional hydrological drivers cannot be excluded, we suggest that a poroelastic strain response of the aquifer system in the Belham valley is a possible explanation for the observed water level changes. According to our simulations, the shallow Belham aquifer responds to a steadily increasing sediment load due to repeated lahar sedimentation in the valley with rising aquifer pressures. A wholesale dome collapse in May 2006 on the other hand induced dilatational strain and thereby a short-term water level drop in a deeper-seated aquifer, which caused groundwater leakage from the Belham aquifer and thereby induced a delayed water level fall in the wells. The system thus responded to both gradual and rapid transient strain associated with the eruption of Soufrière Hills Volcano (Montserrat). This case study gives field evidence for theoretical predictions on volcanic drivers behind hydrological transients, demonstrating the potential of hydrological data for volcano monitoring. Interrogation of such data can provide valuable constraints on stress evolution in volcanic systems and therefore complement other monitoring systems. The presented models and inferred results are conceptually applicable to volcanic areas worldwide.


Sign in / Sign up

Export Citation Format

Share Document