crustal deformation
Recently Published Documents


TOTAL DOCUMENTS

1091
(FIVE YEARS 210)

H-INDEX

63
(FIVE YEARS 6)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 350
Author(s):  
Lavinia Tunini ◽  
David Zuliani ◽  
Andrea Magrin

The geodetic monitoring of the continuous crustal deformation in a particular region has traditionally been the prerogative of the scientific communities capable of affording high-price geodetic-class instruments to track the tiny movements of tectonic plates without losing precision. However, GNSS technology has been continuously and rapidly growing, and in the last years, new cost-efficient instruments have entered the mass market, gaining the attention of the scientific community for potentially being high-performing alternative solutions. In this study, we match in parallel a dual-frequency low-cost receiver with two high-price geodetic instruments, all connected to the same geodetic antenna. We select North-East Italy as testing area, and we process the data together with the observations coming from a network of GNSS permanent stations operating in this region. We show that mm-order precision can be achieved by cost-effective GNSS receivers, while the results in terms of time series are largely comparable to those obtained using high-price geodetic receivers.


Author(s):  
Yiming Ma ◽  
Qiang Wang ◽  
Tianshui Yang ◽  
Quan Ou ◽  
Xiuzheng Zhang ◽  
...  

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Dinh Trong TRAN ◽  
Quoc Long NGUYEN ◽  
Dinh Huy NGUYEN

In processing of position time series of crustal deformation monitoring stations by continuousGNSS station, it is very important to determine the motion model to accurately determine the displacementvelocity and other movements in the time series. This paper proposes (1) the general geometric model foranalyzing GNSS position time series, including common phenomena such as linear trend, seasonal term,jumps, and post-seismic deformation; and (2) the approach for directly estimating time decay ofpostseismic deformations from GNSS position time series, which normally is determined based on seismicmodels or the physical process seismicity, etc. This model and approach are tested by synthetic positiontime series, of which the calculation results show that the estimated parameters are equal to the givenparameters. In addition they were also used to process the real data which is GNSS position time series of4 CORS stations in Vietnam, then the estimated velocity of these stations: DANA (n, e, u = -9.5, 31.5, 1.5mm/year), HCMC (n, e, u = -9.5, 26.2, 1.9 mm/year), NADI (n, e, u = -10.6, 31.5, -13.4 mm/year), andNAVI (n, e, u = -13.9, 32.8, -1.1 mm/year) is similar to previous studies.


2021 ◽  
Vol 64 (4) ◽  
pp. SE436
Author(s):  
Olga F. Lukhneva ◽  
Anna Vladimirovna Novopashina

The recent tectonic stress field in the northeastern Baikal rift system (BRS) corresponds to the crustal deformation field. The stress-strain state of the Earth’s crust determines the fault network geometry and spatiotemporal structure of the epicentral field characterized by many earthquake swarms and earthquake migrations in the study area. In order to study the seismic process dynamics in different directions of the crustal deformation, the spatiotemporal analysis of earthquake time series has been made over the 1964–2015 instrumental period. To determine the relationship between crustal stress and spatiotemporal features of the epicentral field the seismic data were projected along horizontal stress tensor axes σ3 and σ2, consistent with major directions of the crustal deformation, a strike of major rifting structures, and a general azimuth of active fault groups. The NE-SW direction along the intermediate horizontal stress axes and main faulted arears exhibits slow earthquake migrations up to 60 km long, propagating with a modal velocity of about 30 kilometers per year. The NW-SE direction along the principal horizontal stress axes, orthogonal to the main faulted areas, is characterized by shorter migration sequences of less duration, propagating with a higher velocity than sequences registered in the NE-SW. The difference between the migration dynamics in mutually orthogonal directions can be attributed to the fault network configuration and the differences in the deformation process.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yusuke Yokota ◽  
Tadashi Ishikawa ◽  
Shun-ichi Watanabe ◽  
Yuto Nakamura

AbstractThe GNSS-A technique is an observation method that can detect seafloor crustal deformations with centimeter-level positioning accuracy. The GNSS-A seafloor geodetic observation array operated by the Japan Coast Guard (SGO-A) has been constructed near the Japanese Islands along the Nankai Trough and the Japan Trench. This observation array has detected several earthquakes’ displacements and episodic slow crustal deformation. To compare the detection results of SGO-A with other observation networks and expand the SGO-A coverage area, it is necessary to correctly understand its detection capability. In this paper, numerical simulations and statistical verifications were used to assess the capabilities of the present GNSS-A system using a manned vessel (observation frequency: 4–6 times/year, positioning accuracy: standard deviation = 1.5 cm) to detect (1) secular deformation only, (2) a transient slip event only and (3) secular deformation and a transient event together. We verified these results with appropriate thresholds and found the following features: When it is known that there is no transient event, the 95% confidence level (CL) for the estimation of secular crustal deformation rate with 4-year observation is about 0.5–0.8 cm/year; when the deformation rate is known, a signal of about 3.0 cm can be detected by observations of about 4 times before and after the transient event. When the deformation rate and the transient event are detected together, to keep the false positive low (about 0.05), the false negative becomes high (about 0.7–0.2 for detecting a signal of 4.5–6.0 cm). The determined rate and event variations are approximately 1.8 cm/year (95%CL) and 1.5 cm (standard deviation), respectively. We also examined the detection capability for higher observation frequency and positioning accuracy, to examine how the detection capability improves by technological advancements in the future. Additionally, we calculated the spatial range of event detectability using the determined values of detection sensitivity. Obtained results show that each seafloor site can detect a slip event of < 1.0 m scale within about 30 km radius, and approximately one-third of the subseafloor slip event over 100 km from land along the Nankai Trough can only be detected by SGO-A.


2021 ◽  
pp. 229143
Author(s):  
Ziqiang Lü ◽  
Jianshe Lei ◽  
Lihong Zhao ◽  
Xiang Fu ◽  
Jianping Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document