scholarly journals The influence of long- and short-term volcanic strain on aquifer pressure: a case study from Soufrière Hills Volcano, Montserrat (W.I.)

2020 ◽  
Vol 223 (2) ◽  
pp. 1288-1303
Author(s):  
K Strehlow ◽  
J Gottsmann ◽  
A Rust ◽  
S Hautmann ◽  
B Hemmings

Summary Aquifers are poroelastic bodies that respond to strain by changes in pore pressure. Crustal deformation due to volcanic processes induces pore pressure variations that are mirrored in well water levels. Here, we investigate water level changes in the Belham valley on Montserrat over the course of 2 yr (2004–2006). Using finite element analysis, we simulate crustal deformation due to different volcanic strain sources and the dynamic poroelastic aquifer response. While some additional hydrological drivers cannot be excluded, we suggest that a poroelastic strain response of the aquifer system in the Belham valley is a possible explanation for the observed water level changes. According to our simulations, the shallow Belham aquifer responds to a steadily increasing sediment load due to repeated lahar sedimentation in the valley with rising aquifer pressures. A wholesale dome collapse in May 2006 on the other hand induced dilatational strain and thereby a short-term water level drop in a deeper-seated aquifer, which caused groundwater leakage from the Belham aquifer and thereby induced a delayed water level fall in the wells. The system thus responded to both gradual and rapid transient strain associated with the eruption of Soufrière Hills Volcano (Montserrat). This case study gives field evidence for theoretical predictions on volcanic drivers behind hydrological transients, demonstrating the potential of hydrological data for volcano monitoring. Interrogation of such data can provide valuable constraints on stress evolution in volcanic systems and therefore complement other monitoring systems. The presented models and inferred results are conceptually applicable to volcanic areas worldwide.

2013 ◽  
Vol 16 (1) ◽  
pp. 218-230 ◽  
Author(s):  
Gooyong Lee ◽  
Sangeun Lee ◽  
Heekyung Park

This paper proposes a practical approach of a neuro-genetic algorithm to enhance its capability of predicting water levels of rivers. Its practicality has three attributes: (1) to easily develop a model with a neuro-genetic algorithm; (2) to verify the model at various predicting points with different conditions; and (3) to provide information for making urgent decisions on the operation of river infrastructure. The authors build an artificial neural network model coupled with the genetic algorithm (often called a hybrid neuro-genetic algorithm), and then apply the model to predict water levels at 15 points of four major rivers in Korea. This case study demonstrates that the approach can be highly compatible with the real river situations, such as hydrological disturbances and water infrastructure under emergencies. Therefore, proper adoption of this approach into a river management system certainly improves the adaptive capacity of the system.


2020 ◽  
Vol 33 (02) ◽  
pp. 737-745
Author(s):  
Amir Behshad

Installation and monitoring of instrumentation is one of the practical methods for controlling safety and stability of earth dams. Piezometers existing in dam body and dam abutments are one of the various types of precision instruments used in dams, which indicate the height of water level in different parts of the dam. In order to evaluate the performance of piezometers of Shah Qasim Dam in Kohgiluyeh and Boyerahmad province (in south east of Iran), we compare water level changes in piezometer and water level changes in the dam lake over time. In this paper, the above mentioned dam is modelled using the SEEP/W software, then after imposing boundary conditions, water levels are computed at various points. For more accurate comparison, water level changes are plotted in transverse and longitudinal piezometers over time. The results of analysis indicate significant increase of permeability in vicinity of some piezometers. The piezometers BX4, BX14, BX13 and SP6, and the region near them, as well as piezometers SP24 and SP18 and their surrounding area, have critical conditions which should be inspected as soon as possible.


Author(s):  
Stefanie Hautmann ◽  
Joachim Gottsmann ◽  
Antonio Camacho ◽  
Nicolas Fournier ◽  
R Stephen J Sparks

Sign in / Sign up

Export Citation Format

Share Document