Roebling Suspension Bridge. I: Finite-Element Model and Free Vibration Response

2004 ◽  
Vol 9 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Wei-Xin Ren ◽  
George E. Blandford ◽  
Issam E. Harik
2012 ◽  
Vol 170-173 ◽  
pp. 3116-3120
Author(s):  
Tao Wang ◽  
Zhong Qiang Fang ◽  
Hao Li

Blasting construction of Houyuntai Mountain tunnels has vibration influence on ground masonry structures. 3-D finite element model is established to analyze this problem which indicates the house’s vibration response velocity induced by blasting loads. According to this analysis, the structure range of removal and strengthening is assured based on the allowable safety standard of 0.02~0.025m/s of blasting vibration. They include that the houses in 20m range of both sides of horizontal tunnel axis should be removed; the security in 20~28m range is not good, as a result the houses should be removed or strengthened; and the security over 28m range is good for houses. Moreover, some factors such as construction quality can influence houses’ anti-vibration safety.


2016 ◽  
Vol 11 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Marco Domaneschi ◽  
Maria Pina Limongelli ◽  
Luca Martinelli

The paper focuses on extending a recently proposed damage localization method, previously devised for structures subjected to a known input, to ambient vibrations induced by an unknown wind excitation. Wind induced vibrations in long-span bridges can be recorded without closing the infrastructure to traffic, providing useful data for health monitoring purposes. One major problem in damage identification of large civil structures is the scarce data recorded on damaged real structures. A detailed finite element model, able to correctly and reliably reproduce the real structure behavior under ambient excitation can be an invaluable tool, enabling the simulation of several different damage scenarios to test the performance of any monitoring system. In this work a calibrated finite element model of an existing long-span suspension bridge is used to simulate the structural response to wind actions. Several damage scenarios are simulated with different location and severity of damage to check the sensitivity of the adopted identification method. The sensitivity to the length and noise disturbances of recorded data are also investigated.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050069
Author(s):  
Mohammad Amir ◽  
Mohammad Talha

An efficient finite element model based on three nodded element has been developed for the vibration analysis of sandwich arches with graded metallic cellular (GMC) core. The present formulation is based on the higher-order shear deformation theory and orthogonal curvilinear coordinate axes. The arch consists of two isotropic face sheets and a GMC core layer. The internal pores in the core layer follow the different types of distributions. The material properties of the GMC core layer of the sandwich arches vary in the thickness direction as a function in terms of porosity coefficient and mass density. Three types of porosity distributions have been considered to accomplish the vibration responses of sandwich arches. The present formulation is validated with limited results available in the literature. Few new results are computed and the effects of different influencing parameters such as porosity coefficient [Formula: see text], porosity distribution type, the thickness-to-length ratio [Formula: see text], boundary conditions and opening angle [Formula: see text] on the free vibration characteristics of sandwich arches with the GMC core are observed. The present finite element model gives better convergence and more accurate results than a conventional two nodded element-based finite element model.


2014 ◽  
Vol 530-531 ◽  
pp. 284-288
Author(s):  
Jian Rong Yang ◽  
He Xian Su ◽  
Zheng Chong Lai

Modal experiment and 3D finite element analysis are performed on a newly-built self-anchored suspension bridge. The structural modal parameters are identified under ambient vibration excitation. Before that, a 3D finite element model of the bridge is generated using a commercially available finite element package. The measured data as well as the calculated are compared carefully. It illustrates that both of them are in reasonable concordance. The natural frequency of the actual structure is relatively higher than that of finite element model which means the actual bridge is much stiffer than its original design model.


Sign in / Sign up

Export Citation Format

Share Document