seismic performance evaluation
Recently Published Documents





Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 592
Siyun Kim ◽  
Sung Jig Kim ◽  
Chunho Chang

The paper investigates the seismic performance of rectangular RC columns retrofitted by a newly developed 3D Textile Reinforced Mortar (TRM) panel. The 3D-TRM used in this study consists of two components: self-leveling mortar and 3D textiles. Firstly, the flexural capacity of the 3D-TRM panel was investigated through the four-point flexural test. Secondly, a total of five specimens were constructed and experimentally investigated through static cyclic loading tests with constant axial load. One specimen was a non-seismically designed column without any retrofit, while the others were strengthened with either the 3D-TRM panel or conventional Fiber Reinforced Polymer (FRP) sheets. Experimental results in terms of hysteretic behavior, ductility ratio, and energy dissipation are investigated and compared with the cases of specimens with conventional retrofitting methods and without any retrofit. The maximum lateral force, ductility, stiffness degradation, and energy dissipation of RC columns with 3D-TRM panels were significantly improved compared with the conventional RC column. Therefore, it is concluded that the proposed retrofitting method can improve the seismic performance of non-conforming RC columns.

2022 ◽  
Vol 68 (1) ◽  
Yijie Lin ◽  
Qing Chun ◽  
Chengwen Zhang ◽  
Yidan Han ◽  
Hui Fu

AbstractThe hall-style timber frame built in the Song and Yuan dynasties (960–1368 AD) is one of the most important structural prototypes of the traditional timber architecture in East Asia. The current research, through a typical case of the main hall of Baoguo Temple in Ningbo, China, aims to present an accurate and effective seismic performance evaluation method applicable to hall-style timber structures without time–cost expenditure. To obtain more realistic seismic response of hall-style timber frame, a simplified numerical model of the main hall of Baoguo Temple is established based on in situ measurements and low-cycle reversed loading tests results of mortise–tenon joints, moreover, nonlinear static pushover analysis has been performed to quantify the seismic performance levels under five loading conditions. The generalized force–deformation relationship of the timber plastic hinges is modified regarding to the moment–rotation curves of four special mortise–tenon joints. The seismic behaviour of global hall-style timber frame is evaluated through capacity spectrum method and verified by time history analysis, local failure mechanisms are evaluated by the occurrence sequence of plastic hinges. Finally, a performance-based assessment method adequate for the traditional hall-style timber architectures has been proposed with comparison to the current codes. The results have shown that the structural stiffness of the width-direction is less than that of the depth direction due to the asymmetrical configuration of the timber frame, and the building can maintain a stable state under large lateral displacement before collapsing. The inter-storey drift angles of the building under peak ground accelerations of 0.1 g, 0.2 g, and 0.3 g are less than the suggested ultimate values in the current local codes, however, the main hall represents to be more vulnerable to damage when suffer seismic action along the width-direction. This research can provide a reference for seismic performance evaluation and preventive conservation of ancient hall-style timber architectural heritage.

Sign in / Sign up

Export Citation Format

Share Document