functionally graded beam
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 52)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Nikola Nešić ◽  
Milan Cajić ◽  
Danilo Karličić ◽  
Aleksandar Obradović ◽  
Julijana Simonović

2021 ◽  
Vol 11 (24) ◽  
pp. 11747
Author(s):  
Fadi Althoey ◽  
Elias Ali

This paper aims at providing a simplified analytical solution for functionally graded beam stress analysis and optimized material gradation on the beam deflection. The power-law (P-FGM) and exponential (E-FGM) material functions were considered for an exact solution of the normal and shear stress distributions across the beam thickness. Optimization of material function on the FGM beam deflection, which is new of its kind, was also investigated considering both simply supported and cantilever beams. It was observed that the non-dimensional normal stress and shear stress are independent of the elastic moduli values of the constituent materials but rather depends on both the ratio of the elastic moduli and the location across the beam thickness in the E-FGM material function model. This observation was first validated from available kinds of literature and through numerical simulation using ABAQUS and extended to the P-FGM stress analysis. The maximum deflection on the FGM beam occurred for a homogenous steel beam while the minimum deflection was observed on the beam with a P-FGM material function. The results of this work demonstrate that if properly designed and optimized, FGMs can provide an alternative material solution in structural applications.


2021 ◽  
Author(s):  
Nikola Nešić ◽  
Milan Cajić ◽  
Danilo Karličić ◽  
Aleksandar Obradovic ◽  
Julijana Simonović

Abstract This paper investigates the nonlinear dynamic behavior of a nonlocal functionally graded Euler–Bernoulli beam resting on a fractional visco-Pasternak foundation and subjected to harmonic loads. The proposed model captures both, nonlocal parameter considering the elastic stress gradient field and a material length scale parameter considering the strain gradient stress field. Additionally, the von Karman strain-displacement relation is used to describe the nonlinear geometrical beam behavior. The power-law model is utilized to represent the material variations across the thickness direction of the functionally graded beam. The following steps are conducted in this research study. At first, the governing equation of motion is derived using Hamilton's principle and then reduced to the nonlinear fractional order differential equation through the single-mode Galerkin approximation. The methodology to determine steady-state amplitude-frequency responses via incremental harmonic balance method and continuation technique is presented. The obtained periodic solutions are verified against the perturbation multiple scales method for the weakly nonlinear case and numerical integration Newmark method in the case of strong nonlinearity. It has been shown that the application of the incremental harmonic balance method in the analysis of nonlocal strain gradient theory-based structures, can lead to more reliable studies for strongly nonlinear systems. In the parametric study is shown that, on one hand, parameters of the visco-Pasternak foundation and power-law index remarkable affect the response amplitudes. On the contrary, the nonlocal and the length scale parameters are having a small influence on the amplitude-frequency response. Finally, the effects of the fractional derivative order on the system's damping are displayed at time response diagrams and subsequently discussed.


2021 ◽  
Vol 21 (2) ◽  
pp. 7-11
Author(s):  
Ahmed Mansoor Abbood ◽  
Haider K. Mehbes ◽  
Abdulkareem. F. Hasan

In this study, glass-filled epoxy functionally graded material (FGM) was prepared by adopting the hand lay-up method. The vertical gravity casting was used to produce a continuous variation in elastic properties. A 30 % volume fraction of glass ingredients that have mean diameter 90 μm was spread in epoxy resin (ρ = 1050 kg/m3). The mechanical properties of FGM were evaluated according to ASTM D638. Experimental results showed that a gradually relationship between Young’s modulus and volume fraction of glass particles, where the value of Young’s modulus at high concentration of glass particles was greater than that at low concentration, while the value of Poisson’s ratio at high concentration of glass particles was lower than that at low concentration. The manufacture of this FG beam is particularly important and useful in order to benefit from it in the field of various fracture tests under dynamic or cyclic loads.


Sign in / Sign up

Export Citation Format

Share Document