scholarly journals Laboratory Measurement of Two-Phase Flow Parameters in Rock Joints Based on High Pressure Triaxial Testing

Author(s):  
B. Indraratna ◽  
P. G. Ranjith
2014 ◽  
Vol 37 (11) ◽  
pp. 1929-1937 ◽  
Author(s):  
Nayane Macedo Portela da Silva ◽  
Jean-Jacques Letourneau ◽  
Fabienne Espitalier ◽  
Laurent Prat

2013 ◽  
Vol 200 (1) ◽  
pp. 93-114 ◽  
Author(s):  
Andreas Håkansson ◽  
Laszlo Fuchs ◽  
Fredrik Innings ◽  
Johan Revstedt ◽  
Christian Trägårdh ◽  
...  

2004 ◽  
Vol 126 (4) ◽  
pp. 528-538 ◽  
Author(s):  
S. Kim ◽  
S. S. Paranjape ◽  
M. Ishii ◽  
J. Kelly

The vertical co-current downward air-water two-phase flow was studied under adiabatic condition in round tube test sections of 25.4-mm and 50.8-mm ID. In flow regime identification, a new approach was employed to minimize the subjective judgment. It was found that the flow regimes in the co-current downward flow strongly depend on the channel size. In addition, various local two-phase flow parameters were acquired by the multi-sensor miniaturized conductivity probe in bubbly flow. Furthermore, the area-averaged data acquired by the impedance void meter were analyzed using the drift flux model. Three different distributions parameters were developed for different ranges of non-dimensional superficial velocity, defined by the ration of total superficial velocity to the drift velocity.


2009 ◽  
Vol 239 (9) ◽  
pp. 1718-1724 ◽  
Author(s):  
A. Manera ◽  
B. Ozar ◽  
S. Paranjape ◽  
M. Ishii ◽  
H.-M. Prasser

2004 ◽  
Vol 2004.57 (0) ◽  
pp. 319-320
Author(s):  
Hiroyuki SHIOTA ◽  
Akishige SAKURAGI ◽  
Akimaro KAWAHARA ◽  
Michio SADATOMI ◽  
Hiroaki TSUBONE

Author(s):  
Yutaka Takata ◽  
Dong Chang Xing ◽  
Yutaka Fukuhara ◽  
Tatsuya Hazuku ◽  
Tomoji Takamasa ◽  
...  

In relation to the development of the interfacial area transport equation, a precise database of the axial development of void fraction profile, interfacial area concentration and Sauter mean bubble diameter in an adiabatic nitrogen-water bubbly flow in a 9 mm-diameter pipe was constructed for normal and microgravity conditions using stereo image-processing. The flow measurements were performed at four axial locations (axial distance from the inlet normalized by the pipe diameter, z/D = 5, 20, 40 and 60) and with various flows: superficial gas velocity of 0.00840–0.0298 m/s, and superficial liquid velocity of 0.138–0.914 m/s. The effect of gravity on radial distribution of bubbles and the axial development of two-phase flow parameters is discussed in detail based on the obtained database and visual observation.


Sign in / Sign up

Export Citation Format

Share Document