interfacial area
Recently Published Documents


TOTAL DOCUMENTS

1010
(FIVE YEARS 162)

H-INDEX

59
(FIVE YEARS 6)

2022 ◽  
Vol 388 ◽  
pp. 111645
Author(s):  
Kohei Yoshida ◽  
Kota Fujiwara ◽  
Yuki Nakamura ◽  
Akiko Kaneko ◽  
Yutaka Abe

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Benjamin Bindereif ◽  
Heike Karbstein ◽  
Katharina Zahn ◽  
Ulrike van der Schaaf

The influence of the conformation of sugar beet pectin (SBP) on the interfacial and emulsifying properties was investigated. The colloidal properties of SBP, such as zeta potential and hydrodynamic diameter, were characterized at different pH levels. Furthermore, pendant drop tensiometry and quartz crystal microgravimetry were used to study adsorption behavior (adsorbed mass and adsorption rate) and stabilizing mechanism (layer thickness and interfacial tension). A more compact conformation resulted in a faster reduction of interfacial tension, higher adsorbed mass, and a thicker adsorption layer. In addition, emulsions were prepared at varying conditions (pH 3–5) and formulations (1–30 wt% MCT oil, 0.1–2 wt% SBP), and their droplet size distributions were measured. The smallest oil droplets could be stabilized at pH 3. However, significantly more pectin was required at pH 3 compared to pH 4 or 5 to sufficiently stabilize the oil droplets. Both phenomena were attributed to the more compact conformation of SBP at pH < pKa: On the one hand, pectins adsorbed faster and in greater quantity, forming a thicker interfacial layer. On the other hand, they covered less interfacial area per SBP molecule. Therefore, the SBP concentration must be chosen appropriately depending on the conformation.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 346
Author(s):  
Sebastian Frankiewicz ◽  
Szymon Woziwodzki

The steady mixing of gas-liquid systems is used where a large development of the interfacial area is required. However, the presence of gas in the liquid reduces the efficiency of mass transfer by reducing the mixing power, due to the creation of gas formations behind the impeller blades and the reduction in density. The efficiency of mass transfer can be increased by using a concave blade impeller or unsteady mixing. Mass transfer efficiency studies for these impellers and unsteady mixing are limited. This paper presents an analysis of the influence of the impeller construction on the gas hold-up and volumetric mass transfer coefficient kLa. Impellers with a different number of concave blades, and with alternatively arranged concave blades, were analyzed. The obtained results were compared with the standard flat blade turbine. The obtained results indicate that the arrangement of the concave blades has the greatest effect on reducing the gas hold-up and kLa. Higher values were obtained for the four-bladed and six-bladed impellers. A comparison of the gas hold-up rate for the unsteady and steady mixing has shown that for steady mixing greater gas hold-up is achieved. The volumetric mass transfer coefficient for unsteady mixing is also greater compared to steady mixing, indicating greater efficiency in mass transfer.


Author(s):  
Peng Zheng ◽  
Genfu Zhou ◽  
Weiling Li ◽  
Chuanwen Zhao ◽  
Pu Huang ◽  
...  

Abstract The direct aqueous mineral carbonation of carbide slag was investigated. The flow characteristics of carbide slag-CO2-water reaction system in a bubble column were studied, which included the bubble Sauter mean diameter, gas holdup, bubble residence time, and the gas-liquid interfacial area. Bubble flow behaviors in the reactor were characterized by analyzing the bed pressure signals. The effects of the gas velocity (U g ) and liquid to solid ratio (L/S ratio) were discussed and analyzed. The results showed that the larger bubbles were easy to form at the larger L/S ratio, which indicated that the bubble coalescence was promoted. The gas holdup was larger when increasing U g or reducing the L/S ratio. The better gas-liquid interfacial areas were found in a wide range of L/S ratio at U g  = 0.082 m/s. The optimum conditions were found at U g  = 0.082 m/s and L/S ratio = 15–30 mL/g for the better gas-liquid interfacial area and the higher carbide slag conversion. The work provided the theoretical basis for the direct aqueous carbonation of the carbide slag and the operation condition optimization.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2220
Author(s):  
Guanghui Chen ◽  
Zhongcheng Zhang ◽  
Fei Gao ◽  
Jianlong Li ◽  
Jipeng Dong

An experimental study was conducted in this work to investigate the effect of different configurations on bubble cutting and process intensification in a micro-structured jet bubble column (MSJBC). Hydrodynamic parameters, including bubble size, flow field, liquid velocity, gas holdup as well as the interfacial area, were compared and researched for a MSJBC with and without mesh. The bubble dynamics and cutting images were recorded by a non-invasive optical measurement. An advanced particle image velocimetry technique (digital image analysis) was used to investigate the influence of different configurations on the surrounding flow field and liquid velocity. When there was a single mesh and two stages of mesh compared with no mesh, the experimental results showed that the bubble size decreased by 22.7% and 29.7%, the gas holdup increased by 5.7% and 9.7%, and the interfacial area increased by more than 34.8% and 43.5%, respectively. Significant changes in the flow field distribution caused by the intrusive effect of the mesh were observed, resulting in separate liquid circulation patterns near the wire mesh, which could alleviate the liquid back-mixing. The mass transfer experiment results on the chemical absorption of CO2 into NaOH enhanced by a mass transfer process show that the reaction time to equilibrium is greatly reduced in the presence of the mesh in the column.


2021 ◽  
Author(s):  
Theresia Heiden-Hecht ◽  
Stephan Drusch

AbstractOil in water emulsions are commonly stabilized by emulsifying constituents like proteins and/or low molecular weight emulsifiers. The emulsifying constituents can compete or coexist at the interface. Interfacial properties thus depend on molecular structure of the emulsifying constituents and the oil phase and the resulting molecular interactions. The present study systematically analyzed the impact of fatty acid saturation of triacylglycerides and phosphatidylcholine on the interfacial properties of a β-lactoglobulin-stabilized interface. The long-term adsorption behaviour and the viscoelasticity of β-lactoglobulin-films were analyzed with or without addition of phosphatidylcholine via drop tensiometry and dilatational rheology. Results from the present study showed that increasing similarity in fatty acid saturation and thus interaction of phosphatidylcholine and oil phase increased the interfacial tension for the phosphatidylcholine alone or in combination with β-lactoglobulin. The characteristics and stability of interfacial films with β-lactoglobulin-phosphatidylcholine are further affected by interfacial adsorption during changes in interfacial area and crystallization events of low molecular weight emulsifiers. This knowledge gives guidance for improving physical stability of protein-based emulsions in foods and related areas. Graphic abstract


2021 ◽  
Author(s):  
Changqian Cao ◽  
Elsayed Abdelphata ◽  
Aigerim Meimanova ◽  
Jian Wang ◽  
Jiacheng Yu ◽  
...  

Abstract Pickering stabilization by colloidal particles is a common strategy to disperse droplets of one fluid into another fluid in food, cosmetics and chemical industries1-3. For over a century, this kind of stabilization has been governed by constant surface coverage concepts in which particles irreversibly attach to the fluid–fluid interface. The need to cover sufficient interfacial area to prevent coalescence typically results in large loadings of particles, uniform droplet size, creation of rigid interface and closed-cell structure with small total area4-7. Here we report a stabilization mechanism that yields hierarchically structured oil-in-brine emulsions with high interfacial area, deformability, connectivity and long-term stability at unprecedentedly low nanoparticle loadings. The hierarchy in structure is achieved via dynamic cation-particle-droplet interactions in cascaded emulsification, which consists of i) formation of submicron oil droplets (~250 nm) lightly covered by hydrophilic polymer-coated iron oxide nanoparticles and polyvalent metal ions; ii) spontaneous formation of small droplets of nonpolar oil (~1 μm) stabilized by the nanodroplets and cations and iii) attachment of nanodroplet/small droplet clusters to bridge large unarmoured oil droplets (5-50 μm) in macroemulsions. This new mode of stabilization enables much more efficient use of nanoparticles, stabilizing a given size macroemulsion droplet at an order of magnitude smaller particle loading. Moreover, particle loading decreases with the 5/3 power of droplet size, rather than the first power typical of Pickering emulsions. Finally, cations play a novel and essential role in this mechanism, which cannot be accommodated in the conventional Pickering model. Our approach provides a new pathway for templating materials with better control over the structure, and for exploiting applications that are currently inaccessible for Pickering and surfactant stabilized emulsions.


2021 ◽  
Vol 3 ◽  
Author(s):  
Nida Suhail ◽  
A. Khuzaim Alzahrani ◽  
W. Jamith Basha ◽  
Nadeem Kizilbash ◽  
Arsalan Zaidi ◽  
...  

Microemulsions, comprising oil, water and a surfactant, in association with some co-surfactant, are thermodynamically stable systems. They have found applications in a large number of chemical and pharmacological processes due to their unique properties such as large interfacial area, low interfacial tension, and most importantly, the ability to solubilize and deliver hydrophobic drugs. In addition to the oral and intravenous route, they are suitable for drug delivery through the ophthalmic, vaginal, pulmonary, dental, and topical routes. This review highlights the properties and several recent developments in the use of microemulsions for medical treatment purposes including targeted drug delivery.


Sign in / Sign up

Export Citation Format

Share Document