Practical Integration of Semidiscretized Nonlinear Equations of Motion: Proper Convergence for Systems with Piecewise Linear Behavior

2013 ◽  
Vol 139 (2) ◽  
pp. 114-145 ◽  
Author(s):  
Aram Soroushian ◽  
Peter Wriggers ◽  
Jamshid Farjoodi
Author(s):  
Julie J. Parish ◽  
John E. Hurtado ◽  
Andrew J. Sinclair

Nonlinear equations of motion are often linearized, especially for stability analysis and control design applications. Traditionally, the full nonlinear equations are formed and then linearized about the desired equilibrium configuration using methods such as Taylor series expansions. However, it has been shown that the quadratic form of the Lagrangian function can be used to directly linearize the equations of motion for discrete dynamical systems. This procedure is extended to directly generate linearized equations of motion for both continuous and hybrid dynamical systems. The results presented require only velocity-level kinematics to form the Lagrangian and find equilibrium configuration(s) for the system. A set of selected partial derivatives of the Lagrangian are then computed and used to directly construct the linearized equations of motion about the equilibrium configuration of interest, without first generating the entire nonlinear equations of motion. Given an equilibrium configuration of interest, the directly constructed linearized equations of motion allow one to bypass first forming the full nonlinear governing equations for the system. Examples are presented to illustrate the method for both continuous and hybrid systems.


2011 ◽  
Vol 11 (04) ◽  
pp. 755-774 ◽  
Author(s):  
NICOLA IMPOLLONIA ◽  
GIUSEPPE RICCIARDI ◽  
FERNANDO SAITTA

In classic cable theory, vibrations are usually analyzed by writing the equations of motion in the neighborhood of the initial equilibrium configuration. Furthermore, a fundamental difference exists between out-of-plane motions, which basically corresponds to the linear behavior of a taut string and in-plane motion, where self-weight determines a sagged initial profile. This work makes use of a continuous approach to establish the initial shape of the cable when it is subjected to wind or fluid flow arbitrarily directed and employed a novel nonlinear finite element technique in order to investigate the dynamics present around the initial equilibrium shape of the cable. Stochastic solutions in the frequency domain are derived for a wind-exposed cable after linearization of the problem. By applying the proper orthogonal decomposition (POD) technique with the aim of reducing computational effort, an approach to simulate modal wind forces is proposed and applied to the nonlinear equations of motion.


1985 ◽  
Vol 52 (3) ◽  
pp. 507-509 ◽  
Author(s):  
J. G. Simmonds

In the theory of shells of revolution undergoing torsionless, axisymmetric motion, an extensional and a bending hoop strain are introduced that are linear in the displacements, regardless of the magnitudes of the strains and the meridional rotation. The resulting equations of motion and boundary conditions are derived and some common conservative surface loads are listed along with their potentials. The governing equations appear to be the simplest possible in terms of displacements.


Sign in / Sign up

Export Citation Format

Share Document