An Artificial Intelligence-Based Prediction Model for Optimum Design Variables of Reinforced Concrete Retaining Walls

2021 ◽  
Vol 21 (12) ◽  
Author(s):  
Melda Yücel ◽  
Gebrail Bekdaş ◽  
Sinan Melih Nigdeli ◽  
Aylin Ece Kayabekir
Author(s):  
Rasim Temür ◽  
Gebrail Bekdaş

Methodologies based on metaheuristic algorithms such as particle swarm optimization, harmony search algorithm, and teaching-learning-based optimization are proposed for optimum design of reinforced concrete cantilever retaining walls. The objective function of optimization is to find a design providing minimum cost, including material and construction costs. For this purpose, the best combination of 11 design variables (heel and toe projections, stem thickness at the top and bottom of a wall, slab thickness and rebar diameters, and spacing between the bars) that satisfy 29 design constraints including stability (overturning, sliding, and bearing) and reinforced concrete design of the wall are searched during the optimization process. The rules of ACI 318 14 (building code requirements for structural concrete) are used for the reinforced concrete design. In order to determine the strengths and weaknesses of algorithms, several different cases are investigated. As conclusions, some suggestions have been obtained that will lead to future work in this field.


2018 ◽  
Vol 21 (13) ◽  
pp. 2030-2044 ◽  
Author(s):  
Ahmed A Elansary ◽  
Ashraf O Nassef ◽  
Ashraf A El Damatty

Elevated tanks are used all over the world to store water for times of shortage. These tanks can be made of steel, reinforced concrete, or composite, that is, concrete and steel. Composite tanks consist of an external steel shell attached to an internal reinforced concrete wall through steel studs. Composite conical tanks combine the advantages of reinforced concrete and steel tanks as they resist efficiently both tensile and compressive stresses. A comparison showed that the material cost of composite conical tanks is significantly less than that of steel or reinforced concrete tanks having the same layout dimensions. A numerical tool is developed to obtain the optimum design of composite conical tanks under hydrostatic pressure incorporating both finite element and genetic algorithm techniques. This tool is used to obtain the optimum design of a case study composite conical tank that was recently constructed. The developed optimization tool provides the thicknesses of the concrete and steel walls as well as the stud configuration corresponding to the minimum material cost. A comparison between the optimized and unoptimized case study composite tank revealed that a reduction of 32% in the material cost can be achieved. A sensitivity analysis is conducted by changing the price of concrete, steel plate, and studs by (±) 50% of the datum prices and obtaining the corresponding optimum design variables. This analysis showed that the optimum thicknesses of the concrete wall and steel shell as well as studs’ configuration are significantly sensitive to the change in the material prices.


Structures ◽  
2020 ◽  
Vol 25 ◽  
pp. 285-296 ◽  
Author(s):  
Hasan Tahsin Öztürk ◽  
Tayfun Dede ◽  
Emel Türker

Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1232 ◽  
Author(s):  
Neda Moayyeri ◽  
Sadjad Gharehbaghi ◽  
Vagelis Plevris

This paper investigates the effect of computing the bearing capacity through different methods on the optimum construction cost of reinforced concrete retaining walls (RCRWs). Three well-known methods of Meyerhof, Hansen, and Vesic are used for the computation of the bearing capacity. In order to model and design the RCRWs, a code is developed in MATLAB. To reach a design with minimum construction cost, the design procedure is structured in the framework of an optimization problem in which the initial construction cost of the RCRW is the objective function to be minimized. The design criteria (both geotechnical and structural limitations) are considered constraints of the optimization problem. The geometrical dimensions of the wall and the amount of steel reinforcement are used as the design variables. To find the optimum solution, the particle swarm optimization (PSO) algorithm is employed. Three numerical examples with different wall heights are used to capture the effect of using different methods of bearing capacity on the optimal construction cost of the RCRWs. The results demonstrate that, in most cases, the final design based on the Meyerhof method corresponds to a lower construction cost. The research findings also reveal that the difference among the optimum costs of the methods is decreased by increasing the wall height.


In this chapter, the optimization of reinforced concrete (RC) retaining walls is presented. RC retaining walls are one of the structural types that are constructed on land and used for retaining soil backfill. Because of this reason, both structural and geotechnical limits are in progress in the optimization process. Additionally, the stability conditions against pressure of soils are the key constraints in the optimum design of RC retaining walls. The presented methodology in this chapter considers both static and dynamic soil pressures resulting from earthquakes. A computer code employing teaching-learning-based optimization algorithm is also given.


Sign in / Sign up

Export Citation Format

Share Document