River-Flow Forecasting Using Higher-Order Neural Networks

2012 ◽  
Vol 17 (5) ◽  
pp. 655-666 ◽  
Author(s):  
Mukesh K. Tiwari ◽  
Ki-Young Song ◽  
Chandranath Chatterjee ◽  
Madan M. Gupta
2007 ◽  
Vol 4 (3) ◽  
pp. 1369-1406 ◽  
Author(s):  
M. Firat

Abstract. The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. In this study, applicability of Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) methods, Generalized Regression Neural Networks (GRNN) and Feed Forward Neural Networks (FFNN), for forecasting of daily river flow is investigated and the Seyhan catchment, located in the south of Turkey, is chosen as a case study. Totally, 5114 daily river flow data are obtained from river flow gauges station of Üçtepe (1818) on Seyhan River between the years 1986 and 2000. The data set are divided into three subgroups, training, testing and verification. The training and testing data set include totally 5114 daily river flow data and the number of verification data points is 731. The river flow forecasting models having various input structures are trained and tested to investigate the applicability of ANFIS and ANN methods. The results of ANFIS, GRNN and FFNN models for both training and testing are evaluated and the best fit forecasting model structure and method is determined according to criteria of performance evaluation. The best fit model is also trained and tested by traditional statistical methods and the performances of all models are compared in order to get more effective evaluation. Moreover ANFIS, GRNN and FFNN models are also verified by verification data set including 731 daily river flow data at the time period 1998–2000 and the results of models are compared. The results demonstrate that ANFIS model is superior to the GRNN and FFNN forecasting models, and ANFIS can be successfully applied and provide high accuracy and reliability for daily River flow forecasting.


Author(s):  
Hiromi Miyajima ◽  
Noritaka Shigei ◽  
Shuji Yatsuki

This chapter presents macroscopic properties of higher order neural networks. Randomly connected Neural Networks (RNNs) are known as a convenient model to investigate the macroscopic properties of neural networks. They are investigated by using the statistical method of neuro-dynamics. By applying the approach to higher order neural networks, macroscopic properties of them are made clear. The approach establishes: (a) there are differences between stability of RNNs and Randomly connected Higher Order Neural Networks (RHONNs) in the cases of the digital state -model and the analog state model; (b) there is no difference between stability of RNNs and RHONNs in the cases of the digital state -model and the analog state -model; (c) with neural networks with oscillation, there are large differences between RNNs and RHONNs in the cases of the digital state -model and the analog state -model, that is, there exists complex dynamics in each model for ; (d) behavior of groups composed of RHONNs are represented as a combination of the behavior of each RHONN.


Sign in / Sign up

Export Citation Format

Share Document