Short-Duration Rainfall Intensity Equations for Urban Drainage Design

2010 ◽  
Vol 136 (8) ◽  
pp. 519-526 ◽  
Author(s):  
David C. Froehlich
1984 ◽  
Vol 16 (8-9) ◽  
pp. 93-100
Author(s):  
D M Hershfield

Storm data and climatological quantities from both dense raingage networks and individual stations are used to elucidate some of the important problems in developing drainage design criteria for small areas. Examples are presented displaying the variability of rainfall rates for very short durations of time over very small areas. An “average” time distribution curve is presented along with relationships between rainfall amounts for durations from 2- to 60-min. One example outlines a procedure for estimating and comparing six quantities from series of annual maximum rainfalls for several short durations. The quantities include a frequency factor, 100-yr value, the probable maximum rainfall, and the observed world maximum rainfalls.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1943
Author(s):  
Rosario Balbastre-Soldevila ◽  
Rafael García-Bartual ◽  
Ignacio Andrés-Doménech

The two-parameter gamma function (G2P) design storm is a recent methodology used to obtain synthetic hyetographs especially developed for urban hydrology applications. Further analytical developments on the G2P design storm are presented herein, linking the rainfall convectivity n-index with the shape parameter of the design storm. This step can provide a useful basis for future easy-to-handle rainfall inputs in the context of regional urban drainage studies. A practical application is presented herein for the case of Valencia (Spain), based on high-resolution time series of rainfall intensity. The resulting design storm captures certain internal statistics and features observed in the fine-scale rainfall intensity historical records. On the other hand, a direct, simple method is formulated to derivate the design storm from the intensity–duration–frequency (IDF) curves, making use of the analytical relationship with the n-index.


2020 ◽  
Vol 25 (7) ◽  
pp. 04020030
Author(s):  
James C. Y. Guo ◽  
Wen Liang Wang ◽  
Jun Qi Li

1962 ◽  
Vol 88 (6) ◽  
pp. 93-114
Author(s):  
W. J. Bauer

Sign in / Sign up

Export Citation Format

Share Document