Novel Finite Element Analysis of Curved Concrete Box Girders Using Hybrid Box Elements

2021 ◽  
Vol 147 (1) ◽  
pp. 04020284
Author(s):  
Taiyu Song ◽  
C. S. Walter Yang ◽  
David W. Scott ◽  
Yin Shen ◽  
Guoping Li
2011 ◽  
Vol 147 ◽  
pp. 157-160 ◽  
Author(s):  
Yong Zeng ◽  
Hong Mei Tan

Due to its outstanding aerodynamic shape and light weight, the trapezoidal cross-section flat steel box girder with orthotropic decks and thin-walled longitudinal stiffeners of trapezoidal cross section are widely used in long-span suspension bridges in the world. However, because of the geometrical characteristics and the relative flexibility of their components, these structures may be quite susceptible to traffic loadings that fatigue cracks tend to appear in these structures. In this paper, Jiangyin Bridge is used as a case study to investigate the fatigue performance of the steel girders of suspension bridge Jiangyin Bridge is the second longest bridge in China, which has the main span of 1385m. The stress analysis of steel box girders is firstly carried out based on the analysis of fatigue life. Fatigue assessment method is proposed on the basis of in-situ measurement data combined with finite element analysis. A complete fatigue assessment is made in this paper. Key words: flat steel box girder; orthotropic decks; finite element analysis; fatigue assessment


2011 ◽  
Vol 422 ◽  
pp. 693-696
Author(s):  
Yan Weng ◽  
Mei Cen ◽  
Ya Guang Xu

A simple box girder bridge with spans 25m is being constructed on the No.2 road of a project of PanZhiHua Steel. A Bailey trussed girder is constructed under the bridge to assist its construction. The paper makes spatial finite element analysis about the Bailey trussed girder. Firstly, the spatial finite element model is built. Then the force, stress and displacement of the girder under six box girders’ self weigh and the construction load are analyzed in detail. Lastly, the construction scheme is optimized. After optimization, all indexes of Bailey trussed girder can meet code requirement.


1980 ◽  
Vol 106 (6) ◽  
pp. 1343-1357 ◽  
Author(s):  
Martti J. Mikkola ◽  
Juha Paavola

Sign in / Sign up

Export Citation Format

Share Document