blast loading
Recently Published Documents


TOTAL DOCUMENTS

1261
(FIVE YEARS 308)

H-INDEX

53
(FIVE YEARS 10)

2022 ◽  
Vol 9 ◽  
Author(s):  
Xiaochao Zhang ◽  
Qingwen Yang ◽  
Xiangjun Pei ◽  
Ruifeng Du

As blasting technology starts to be used in a wide range of areas, blast loading has led to an increasing number of geological disasters such as slope deformation, collapses, and soil slippage. Slopes with weak interlayers are more likely to be deformed and damaged under the influence of blast loading. It is of great importance to study the evolution for the deformation of slopes with weak interlayers during blasting excavation. This study constructed a slope model with a weak interlayer to investigate the influence of different factors of blasting, including explosive charge, blast radius, blast origin, and multi-hole blasting, on the internal dynamic response. The deformation mechanism of slopes with weak interlayers under the influence of blast loading was analyzed. Test results show that each layer of the model had a different displacement response (uncoordinated dynamic response) to blasting with various factors. Explosive energy and the pattern of dynamic response of each layer varied depending on different settings of blasting factors such as explosive charge, blast radius, blast origin, and detonation initiation method. When the explosive energy produced under the influence of various factors was small, the change in the uncoordinated dynamic response between layers was significant, and the change gradually became less significant as the explosive energy increased. Therefore, this study has proposed the concept of critical explosive energy, and it is speculated that when the explosive energy produced with various factors is less than critical explosive energy, the dynamic response is mainly affected by the internal structure of the slope (property difference induced geologic layers). In other words, the uncoordinated motion of material’s particles in each layer is caused by different limitations and the degree of movement of the particles, which leads to the uncoordinated dynamic response and uncoordinated deformation of each layer. If the explosive energy is greater than the critical value, the dynamic response of each layer is mainly affected by the explosive energy. The differences in the internal structure of the slope are negligible, and the incoordination of dynamic responses between layers gradually weakens and tends to synchronize.


2021 ◽  
pp. 204141962110592
Author(s):  
Kai Fischer ◽  
Jan Dirk van der Woerd ◽  
Wilfried Harwick ◽  
Alexander Stolz

Blast loading scenarios and the corresponding hazards have to be evaluated for infrastructure elements and buildings especially at industrial sites for safety and security issues. Point fixed corrugated metal sheets are often applied as façade elements and can become a hazard for humans if they are pulled off. This paper investigates the dynamic bearing capacity of such structural members in terms of their general bending behavior in the middle of the span and pull-out behaviors at the fixing points. The elements are fixed at two sides and the load transfer is uniaxial. An experimental series with static and dynamic tests forms the basis to identify the predominant failure modes and to quantify the maximum stress values that can be absorbed until the investigated structural members fail. The experimental findings are applied to create and to optimize an engineering model for the fast and effective assessment of the structural response. The aim is the derivation of a validated model which is capable to predict the blast loading behavior of metal sheets including arbitrary dimensions, material properties, and screw connections. Results of this study can be integrated into a systematic risk and resilience management process to assess expected damage effects and the evaluation of robustness.


2021 ◽  
pp. 131-146
Author(s):  
Hukum Chand Dewangan ◽  
Subrata Kumar Panda ◽  
Nitin Sharma ◽  
Chetan Kumar Hirwani

Sign in / Sign up

Export Citation Format

Share Document