An Application of Combined Stochastic User Equilibrium Model to the Tokyo Area: Combined Trip Distribution, Modal Split and Assignment Model with Explicitly Distinct Trip Purposes

Author(s):  
Takuya Maruyama ◽  
Noboru Harata ◽  
Katsutoshi Ohta
2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879323
Author(s):  
Lei Zhao ◽  
Hongzhi Guan ◽  
Xinjie Zhang ◽  
Xiongbin Wu

In this study, a stochastic user equilibrium model on the modified random regret minimization is proposed by incorporating the asymmetric preference for gains and losses to describe its effects on the regret degree of travelers. Travelers are considered to be capable of perceiving the gains and losses of attributes separately when comparing between the alternatives. Compared to the stochastic user equilibrium model on the random regret minimization model, the potential difference of emotion experienced induced by the loss and gain in the equal size is jointly caused by the taste parameter and loss aversion of travelers in the proposed model. And travelers always tend to use the routes with the minimum perceived regret in the travel decision processes. In addition, the variational inequality problem of the stochastic user equilibrium model on the modified random regret minimization model is given, and the characteristics of its solution are discussed. A route-based solution algorithm is used to resolve the problem. Numerical results given by a three-route network show that the loss aversion produces a great impact on travelers’ choice decisions and the model can more flexibly capture the choice behavior than the existing models.


Author(s):  
Kuilin Zhang ◽  
Hani S. Mahmassani ◽  
Chung-Cheng Lu

This study presents a time-dependent stochastic user equilibrium (TDSUE) traffic assignment model within a probit-based path choice decision framework that explicitly takes into account temporal and spatial correlation (traveler interactions) in travel disutilities across a set of paths. The TDSUE problem, which aims to find time-dependent SUE path flows, is formulated as a fixed-point problem and solved by a simulation-based method of successive averages algorithm. A mesoscopic traffic simulator is employed to determine (experienced) time-dependent travel disutilities. A time-dependent shortest-path algorithm is applied to generate new paths and augment a grand path set. Two vehicle-based implementation techniques are proposed and compared in order to show their impact on solution quality and computational efficiency. One uses the classical Monte Carlo simulation approach to explicitly compute path choice probabilities, and the other determines probabilities by sampling vehicles’ path travel costs from an assumed perception error distribution (also using a Monte Carlo simulation process). Moreover, two types of variance-covariance error structures are discussed: one considers temporal and spatial path choice correlation (due to path overlapping) in terms of aggregated path travel times, and the other uses experienced (or empirical) path travel times from a sample of individual vehicle trajectories. A set of numerical experiments are conducted to investigate the convergence pattern of the solution algorithms and to examine the impact of temporal and spatial correlation on path choice behavior.


2011 ◽  
Vol 130-134 ◽  
pp. 3716-3720
Author(s):  
Yi Ran Cheng ◽  
Yin Han ◽  
Xin Kai Jiang ◽  
Jia Lei Gu

Considering the un-deterministic transportation networks, the paper proposes the change of the route choice decisions under the stochastic transportation networks. The route choice behavior is described as a choice for a time shortest route which is subject to a time-reliability level. The paper also considered this new route choice behavior in the stochastic user equilibrium model, and proposed stochastic user equilibrium model based on the optimized reliability travel time route choice behavior in the stochastic networks. The equivalence and uniqueness of the solution of the model are demonstrated. Numerical results of a small network show that the proposed model can reflect the real traveler’s route choice behavior in stochastic transportation networks.


Sign in / Sign up

Export Citation Format

Share Document