A Spatio-Temporal Assessment Framework for Assessment of Water Quality Data

Author(s):  
Ramesh S. V. Teegavarapu ◽  
Lindell Ormsbee
Author(s):  
Innocent Rangeti ◽  
Bloodless Dzwairo

The major challenge with regular water quality monitoring programmes is making sense of the large and complex physico-chemical data-sets that are generated in a comparatively short period of time. Consequentially, this presents difficulties for water management practitioners who are expected to make informed decisions based on information extracted from the large data-sets. In addition, the nonlinear nature of water quality data-sets often makes it difficult to interpret the spatio-temporal variations. These reasons necessitated the need for effective methods of interpreting water quality results and drawing meaningful conclusions. Hence, this study applied multivariate techniques, namely Cluster Analysis and Principal Component Analysis, to interpret eight-year (2005–2012) water quality data that was generated from a monitoring exercise at six stations in uMngeni Basin, South Africa. The principal components extracted with eigenvalues of greater than 1 were interpreted while considering the pollution issues in the basin. These extracted components explain 67–76% of the water quality variation among the stations. The derived significant parameters suggest that uMngeni Basin was mainly affected by the catchment’s geological processes, surface runoff, domestic sewage effluent, seasonal variation and agricultural waste. Cluster Analysis grouped the sampling six stations into two clusters namely heavy (B) or low (A), based on the degree of pollution. Cluster A mainly consists of water sampling stations that were located in the outflow of the dam (NDO, IDO, MDO and NDI) and its water can be described as of fairly good quality due to dam retention and attenuation effects. Cluster B mainly consist of dam inflow water sampling stations (MDI and IDI), which can be described as polluted if compared to cluster A. The poor quality water observed at Cluster B sampling stations could be attributed to natural and anthropogenic activities through point source and runoff. The findings could assist in determining an appropriate set of water quality parameters that would indicate variation of water quality in the basin, with minimum loss of information. It is, therefore, recommended that this approach be used to assist decision-makers regarding strategies for minimising catchment pollution.


2000 ◽  
Author(s):  
Kathryn M. Conko ◽  
Margaret M. Kennedy ◽  
Karen C. Rice

Sign in / Sign up

Export Citation Format

Share Document