Research on Taboo Simulated Annealing Combinatorial Optimization Algorithm of Location Routing Problem with Pickups and Deliveries

ICCTP 2009 ◽  
2009 ◽  
Author(s):  
Dawei Hu ◽  
Dengdian Xuan ◽  
Huigangand Lin ◽  
Xiaofen Guo
2020 ◽  
Vol 4 (1) ◽  
pp. 35-46
Author(s):  
Winarno (Universitas Singaperbangsa Karawang) ◽  
A. A. N. Perwira Redi (Universitas Pertamina)

AbstractTwo-echelon location routing problem (2E-LRP) is a problem that considers distribution problem in a two-level / echelon transport system. The first echelon considers trips from a main depot to a set of selected satellite. The second echelon considers routes to serve customers from the selected satellite. This study proposes two metaheuristics algorithms to solve 2E-LRP: Simulated Annealing (SA) and Large Neighborhood Search (LNS) heuristics. The neighborhood / operator moves of both algorithms are modified specifically to solve 2E-LRP. The proposed SA uses swap, insert, and reverse operators. Meanwhile the proposed LNS uses four destructive operator (random route removal, worst removal, route removal, related node removal, not related node removal) and two constructive operator (greedy insertion and modived greedy insertion). Previously known dataset is used to test the performance of the both algorithms. Numerical experiment results show that SA performs better than LNS. The objective function value for SA and LNS are 176.125 and 181.478, respectively. Besides, the average computational time of SA and LNS are 119.02s and 352.17s, respectively.AbstrakPermasalahan penentuan lokasi fasilitas sekaligus rute kendaraan dengan mempertimbangkan sistem transportasi dua eselon juga dikenal dengan two-echelon location routing problem (2E-LRP) atau masalah lokasi dan rute kendaraan dua eselon (MLRKDE). Pada eselon pertama keputusan yang perlu diambil adalah penentuan lokasi fasilitas (diistilahkan satelit) dan rute kendaraan dari depo ke lokasi satelit terpilih. Pada eselon kedua dilakukan penentuan rute kendaraan dari satelit ke masing-masing pelanggan mempertimbangan jumlah permintaan dan kapasitas kendaraan. Dalam penelitian ini dikembangkan dua algoritma metaheuristik yaitu Simulated Annealing (SA) dan Large Neighborhood Search (LNS). Operator yang digunakan kedua algoritma tersebut didesain khusus untuk permasalahan MLRKDE. Algoritma SA menggunakan operator swap, insert, dan reverse. Algoritma LNS menggunakan operator perusakan (random route removal, worst removal, route removal, related node removal, dan not related node removal) dan perbaikan (greedy insertion dan modified greedy insertion). Benchmark data dari penelitian sebelumnya digunakan untuk menguji performa kedua algoritma tersebut. Hasil eksperimen menunjukkan bahwa performa algoritma SA lebih baik daripada LNS. Rata-rata nilai fungsi objektif dari SA dan LNS adalah 176.125 dan 181.478. Waktu rata-rata komputasi algoritma SA and LNS pada permasalahan ini adalah 119.02 dan 352.17 detik.


2013 ◽  
Vol 361-363 ◽  
pp. 1900-1905 ◽  
Author(s):  
Ji Ung Sun

In this paper we consider the location-routing problem which combines the facility location and the vehicle routing decisions. In this type of problem, we have to determine the location of facilities within a set of possible locations and routes of the vehicles to meet the demands of number of customers. Since the location-routing problem is NP-hard, it is difficult to obtain optimal solution within a reasonable computational time. Therefore, a two-phase ant colony optimization algorithm is developed which solves facility location problem and vehicle routing problem hierarchically. Its performance is examined through a comparative study. The experimental results show that the proposed ant colony optimization algorithm can be a viable solution method for the general transportation network planning.


Author(s):  
H A Hassan-Pour ◽  
M Mosadegh-Khah ◽  
R Tavakkoli-Moghaddam

This paper presents a novel mathematical model for a stochastic location-routing problem (SLRP) that minimizes the facilities establishing cost and transportation cost, and maximizes the probability of delivery to customers. In this proposed model, new aspects of a location-routing problem (LRP), such as stochastic availability of facilities and routes, are developed that are similar to real-word problems. The proposed model is solved in two stages: (i) solving the facility location problem (FLP) by a mathematical algorithm and (ii) solving the multi-objective multi-depot vehicle routing problem (MO-MDVRP) by a simulated annealing (SA) algorithm hybridized by genetic operators, namely mutation and crossover. The proposed SA can find good solutions in a reasonable time. It solves the proposed model in large-scale problems with acceptable results. Finally, a trade-off curve is used to depict and discuss a large-sized problem. The associated results are compared with the results obtained by the lower bound and Lingo 8.0 software.


Sign in / Sign up

Export Citation Format

Share Document