Axial Vibration of Partially Embedded Pile Groups in Layered Soil

Author(s):  
Q. Ren ◽  
M. S. Huang
2021 ◽  
Vol 7 (4) ◽  
pp. 730-746
Author(s):  
Amanpreet Kaur ◽  
Harvinder Singh ◽  
J. N. Jha

This paper presents the results of three dimensional finite element analysis of laterally loaded pile groups of configuration 1×1, 2×1 and 3×1, embedded in two-layered soil consisting of soft clay at liquid limit overlying dense sand using Plaxis 3D. Effects of variation in pile length (L) and clay layer thickness (h) on lateral capacity and bending moment profile of pile foundations were evaluated by employing different values of pile length to diameter ratio (L/D) and ratio of clay layer thickness to pile length (h/L) in the analysis. Obtained results indicated that the lateral capacity reduces non-linearly with increase in clay layer thickness. Larger decrease was observed in group piles. A non-dimensional parameter Fx ratio was defined to compare lateral capacity in layered soil to that in dense sand, for which a generalized expression was derived in terms of h/L ratio and number of piles in a group. Group effect on lateral resistance and maximum bending moment was observed to become insignificant for clay layer thickness exceeding 40% of pile length. For a fixed value of clay layer thickness, lateral capacity and bending moment in a single pile increased significantly with increase in pile length only up to an optimum embedment depth in sand layer which was found to be equal to three times pile diameter and 0.21 times pile length for pile with L/D 15. Scale effect on lateral capacity has also been studied and discussed. Doi: 10.28991/cej-2021-03091686 Full Text: PDF


1991 ◽  
Vol 10 (8) ◽  
pp. 386-401 ◽  
Author(s):  
Amir M. Kaynia ◽  
Eduardo Kausel
Keyword(s):  

2022 ◽  
Vol 142 ◽  
pp. 104564
Author(s):  
Lubao Luan ◽  
Lei Gao ◽  
George Kouretzis ◽  
Xuanming Ding ◽  
Hongyu Qin ◽  
...  

1991 ◽  
Vol 28 (6) ◽  
pp. 909-917 ◽  
Author(s):  
A. S. Yalcin ◽  
G. G. Meyerhof

The bearing capacity of flexible model piles and small pile groups under axial, lateral, and various combinations of eccentric and inclined loads in layered soil consisting of clay overlying sand is investigated. Ultimate pile capacity is found to depend on the eccentricity and inclination of the load and, more significantly, on the ratio of the upper layer thickness to pile embedment. Theoretical estimates based on the concept of effective pile embedment ratio and expressed in terms of equivalent rigid piles agree reasonably well with the experimental values. The behaviour of 2 × 2 flexible model pile groups is observed to be similar to that of single piles. Key words: bearing capacity, piles, flexible pile, pile group, layered soil, sand, clay, eccentric load, inclined load, model pile test.


1995 ◽  
Vol 32 (2) ◽  
pp. 204-222 ◽  
Author(s):  
G. G. Meyerhof

Previous analyses of the ultimate resistance and displacements of rigid piles under lateral loads and moments have been extended to the general case of eccentric and inclined loads on flexible piles by using the concept of effective embedment depths of equivalent rigid piles. Recent research on the behaviour of large model tests on instrumented rigid and flexible piles under eccentric and inclined loads in sand, clay, and layered soil is summarized. Reasonable agreement is found between observed and predicted behaviour. The proposed method of analysis is also supported by comparison with the results of many field case records of single piles and large pile groups under lateral loads indifferent types of soils. Key words : bearing capacity, displacement, eccentric loads, inclined loads, layered soil, pile.


1985 ◽  
Vol 22 (3) ◽  
pp. 399-402 ◽  
Author(s):  
G. G. Meyerhof ◽  
R. D. Purkayastha

The ultimate bearing capacity of rigid model piles and pile groups in layered soil consisting of clay overlying sand has been investigated for various combinations of eccentricity and inclination of load and with varying thicknesses of clay layer. The effect of eccentricity and inclination of the load and thickness ratios of clay layer to pile embedment in the sand on the bearing capacity can be represented by simple interaction relationships to estimate the ultimate load. The results of load tests on single model piles and freestanding pile groups are presented in the form of polar bearing capacity diagrams and are compared with the theoretical estimates. The thickness of clay layer on the sand is found to have a significant influence on the bearing capacity of single piles and pile groups. Key words: pile foundation, model test, layered soil, eccentric load, inclined load, sand, clay, analysis, bearing capacity.


Sign in / Sign up

Export Citation Format

Share Document