pile groups
Recently Published Documents


TOTAL DOCUMENTS

858
(FIVE YEARS 162)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-26
Author(s):  
M. Watford ◽  
J. Templeman ◽  
Z. Orazalin ◽  
H. Zhou ◽  
A. Franza ◽  
...  

In this paper, the lateral limiting pressure offered by the deep ‘flow-around’ soil failure mechanism for perimeter (ring) pile groups in undrained soil is explored using two−dimensional finite element modelling. A parametric study investigates the role of group configuration, pile−soil adhesion, group size, pile spacing and load direction on group capacity and corresponding soil failure mechanisms. The finite element output show that the plan group configuration (square or circular) has a negligible influence on lateral capacity for closely spaced perimeter pile groups. When compared to ‘full’ square pile groups with the same number of piles, the present results suggest that for practical pile spacing (≳ two pile diameters), perimeter groups do not necessarily increase capacity efficiency, particularly if the piles are smooth. Nevertheless, perimeter groups are shown to be characterized by both the invariance of their capacity to the direction of loading and their highly uniform load-sharing between piles, which are beneficial features to optimize design.


2022 ◽  
Vol 142 ◽  
pp. 104564
Author(s):  
Lubao Luan ◽  
Lei Gao ◽  
George Kouretzis ◽  
Xuanming Ding ◽  
Hongyu Qin ◽  
...  

2022 ◽  
Vol 152 ◽  
pp. 107008
Author(s):  
A.F. Fayez ◽  
M.H. El Naggar ◽  
A.B. Cerato ◽  
A. Elgamal

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3623
Author(s):  
Jyh-Haw Tang ◽  
Aisyah Dwi Puspasari

Scouring is one of the most common potential causes of bridge pile foundation failure, with loss of life, economic and environmental impacts. Comprehensive studies on the numerical simulation of local scour around pile groups are still limited. This paper presents a numerical simulation using Flow-3D software to calculate the maximum sediment scour depth and investigate the mechanism around the groups of three cylinders in a tandem arrangement. A validation using the experimental study was carried out to confirm the reliability of the present numerical model. By using the Van Rijn transport rate equation and RNG k-ε turbulence model, the results of time evolution of scour depth and bed elevation contour show good agreement with the experimental study. The numerical simulation of three cylinders in a tandem arrangement were conducted with pile spacing ratios, G/D of 2 and 3. The local scour is affected by the horseshoe vortex from the downflow driven by the downward pressure gradient and rotates in front of the pile and the high bed shear stress, triggered by flow acceleration. The deepest maximum local scour depth is always obtained by the front pile as a shield pile, followed by the piles behind. The trend of the maximum local scour depth in a tandem arrangement is in accordance with the experimental studies and has a better agreement than previous numerical studies with the same model setup. This means that the numerical model used to simulate pile groups is accurate and capable of calculating the depth of sediment scour.


2021 ◽  
Author(s):  
Davide Noè Gorini ◽  
Luigi Callisto
Keyword(s):  

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 4548-4559
Author(s):  
Shan-wei Liu ◽  
Qian-qing Zhang ◽  
Chun-yu Cui ◽  
Ruo-feng Feng ◽  
Wei Cui

2021 ◽  
Vol 147 (12) ◽  
pp. 04021146
Author(s):  
Charles W. W. Ng ◽  
Alireza Farivar ◽  
Sherif M. M. H. Gomaa ◽  
Fardin Jafarzadeh

Author(s):  
Ting Cui ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
Lihao Yuan ◽  
Duanfeng Han ◽  
...  

Abstract Accuracy estimation of wave loading on cylinders in a pile group under different impact scenarios is essential for both the structural safety and cost of coastal and offshore structures. Differing from the interaction of waves with a single cylinder, less attention has been paid to pile groups under different arrangements. Numerical simulations of interactions between plunging breaking waves and pile group in finite water depth are performed using the two-phase flow model in REEF3D, an open-source computational fluid dynamics program to investigate the wave loads and flow kinematics characteristics. The Reynolds-averaged Navier-Stokes equation with the two equation k − ω turbulence model is adopted to resolve the numerical wave tank. The model is validated by comparing the numerical wave forces and free surface elevation with measurements from experiments. The computational results show fairly good agreement with experimental data. Four cases are simulated with different relative distances, numbers of cylinders and arrangements. Results show that the wave forces on cylinders in the pile group are effected by the relative distance between cylinders. The staggered arrangement has a significant influence on the wave forces on the first and second cylinder. The interaction inside a pile group mostly happens between the neighboring cylinders.


Sign in / Sign up

Export Citation Format

Share Document