Bearing capacity of flexible piles under eccentric and inclined loads in layered soil

1991 ◽  
Vol 28 (6) ◽  
pp. 909-917 ◽  
Author(s):  
A. S. Yalcin ◽  
G. G. Meyerhof

The bearing capacity of flexible model piles and small pile groups under axial, lateral, and various combinations of eccentric and inclined loads in layered soil consisting of clay overlying sand is investigated. Ultimate pile capacity is found to depend on the eccentricity and inclination of the load and, more significantly, on the ratio of the upper layer thickness to pile embedment. Theoretical estimates based on the concept of effective pile embedment ratio and expressed in terms of equivalent rigid piles agree reasonably well with the experimental values. The behaviour of 2 × 2 flexible model pile groups is observed to be similar to that of single piles. Key words: bearing capacity, piles, flexible pile, pile group, layered soil, sand, clay, eccentric load, inclined load, model pile test.


1985 ◽  
Vol 22 (3) ◽  
pp. 399-402 ◽  
Author(s):  
G. G. Meyerhof ◽  
R. D. Purkayastha

The ultimate bearing capacity of rigid model piles and pile groups in layered soil consisting of clay overlying sand has been investigated for various combinations of eccentricity and inclination of load and with varying thicknesses of clay layer. The effect of eccentricity and inclination of the load and thickness ratios of clay layer to pile embedment in the sand on the bearing capacity can be represented by simple interaction relationships to estimate the ultimate load. The results of load tests on single model piles and freestanding pile groups are presented in the form of polar bearing capacity diagrams and are compared with the theoretical estimates. The thickness of clay layer on the sand is found to have a significant influence on the bearing capacity of single piles and pile groups. Key words: pile foundation, model test, layered soil, eccentric load, inclined load, sand, clay, analysis, bearing capacity.



1994 ◽  
Vol 31 (4) ◽  
pp. 583-590 ◽  
Author(s):  
G.G. Meyerhof ◽  
A.S. Yalcin

The behaviour of single free-head model flexible vertical and batter piles under the general case of eccentric and inclined loads in two-layered soil is investigated. The bearing capacity of the piles is found to depend on the layered structure, the eccentricity and inclination of the load, and the pile batter. The theoretical estimates of ultimate loads obtained from semiempirical relations agree fairly well with the test results. Key words : bearing capacity, deformation, batter pile, eccentricity factor, eccentric load, inclination factor, inclined load, layered soil, model test, sand, clay.



1989 ◽  
Vol 26 (1) ◽  
pp. 34-42 ◽  
Author(s):  
G. G. Meyerhof ◽  
D. P. Ghosh

The ultimate bearing capacity of flexible single model piles and small pile groups of timber and nylon in loose sand and soft clay has been determined under various combinations of eccentricity and inclination of the load varying in direction from vertical to horizontal. The results of the load tests are presented in the form of polar bearing capacity diagrams and they are compared with the theoretical estimates based on the concept of an effective embedment depth in terms of the behaviour of equivalent rigid piles. Reasonable agreement has been found between the observed and predicted ultimate bearing capacity of flexible piles under any combination of eccentricity and inclination of loads. Key words: flexible piles, pile groups, ultimate bearing capacity, ultimate moment, model test, eccentric load, inclined load, sand, clay.



1995 ◽  
Vol 32 (2) ◽  
pp. 204-222 ◽  
Author(s):  
G. G. Meyerhof

Previous analyses of the ultimate resistance and displacements of rigid piles under lateral loads and moments have been extended to the general case of eccentric and inclined loads on flexible piles by using the concept of effective embedment depths of equivalent rigid piles. Recent research on the behaviour of large model tests on instrumented rigid and flexible piles under eccentric and inclined loads in sand, clay, and layered soil is summarized. Reasonable agreement is found between observed and predicted behaviour. The proposed method of analysis is also supported by comparison with the results of many field case records of single piles and large pile groups under lateral loads indifferent types of soils. Key words : bearing capacity, displacement, eccentric loads, inclined loads, layered soil, pile.



1986 ◽  
Vol 23 (4) ◽  
pp. 451-457 ◽  
Author(s):  
V. V. R. N. Sastry ◽  
G. G. Meyerhof ◽  
T. Koumoto

The lateral soil pressures, ultimate bearing capacity, and displacements of instrumented vertical single rigid model piles in a layered system consisting of soft clay overlying loose sand and subjected to vertical eccentric and central inclined loads have been investigated. The variation of lateral soil pressures and the tip resistance of the pile are analysed with respect to the total load or moment on the pile. Theoretical estimates of pile capacity in homogeneous soils under pure moment and under horizontal load have been extended to piles in a layered system. For intermediate eccentricities and inclinations of the load, the pile capacity can be estimated from simple interaction relations or semiempirical eccentricity and inclination factors. The pile displacements are analysed in the light of linear elastic theory and nondimensional p − y curves. Reasonable agreement has been found between the measured and predicted values. Key words: bearing capacity, clay, displacements, eccentric load, horizontal load, lateral pressure, layered system, model test, pile, sand.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mahdy Khari ◽  
Khairul Anuar Kassim ◽  
Azlan Adnan

Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratiol/d= 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing ofs/dfrom 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio ofs/dmore than6dis large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.



1981 ◽  
Vol 18 (2) ◽  
pp. 297-300 ◽  
Author(s):  
G. G. Meyerhof

The ultimate bearing capacity of rigid vertical and batter piles and pile groups in clay has been determined under various inclinations of the load, varying from the vertical to horizontal directions. The results of load tests on single model piles of different lengths and inclinations and on free-standing groups and piled foundations are compared with theoretical estimates. The influence of load inclination on the bearing capacity can be represented by simple interaction relationships between the axial and normal components of the ultimate load. The effect of eccentricity of the load on the ultimate bearing capacity of pile groups is discussed on the basis of previous theory and model test results.



2017 ◽  
Vol 7 (5) ◽  
pp. 1894-1899
Author(s):  
A. Firoozfar ◽  
A. Rostami ◽  
H. Ghaderi ◽  
H. Zamani ◽  
A. Rostamkhani

Piles are usually made of steel, concrete, reinforced concrete or wood, used to enhance the ground’s bearing capacity in order to enable the construction of deep foundations, also called pile foundations. However, the exact effect of the complex interaction between the piles and the surrounding soil has not adequately been investigated yet. Considering the increased application of the technique recently, further analysis is essential for achieving the highest economic and technical capacity. Using fewer piles or shorter piles and allowing greater distances between pile groups, results to reduced construction. However, other restrictions such as high groundwater level, bedrock depth and the limited size of the foundation are also to be considered. The issue of optimal pile layout is further investigated in the current paper employing Plaxis, a finite element software, for modeling purposes and considering axial loadings in granular soils. Results are shown and further discussed.



Sign in / Sign up

Export Citation Format

Share Document