Impact Loading and Dynamic Response of Caisson Breakwaters - Results of Large-Scale Model Tests -

Author(s):  
H. Oumeraci ◽  
H. W. Partenscky ◽  
S. Kohlhase ◽  
P. Klammer
1989 ◽  
Author(s):  
R. DE GAAIJ ◽  
E. VAN RIETBERGEN ◽  
M. SLEGERS

2018 ◽  
Vol 37 (2) ◽  
pp. 142-148
Author(s):  
Fan Pengxian ◽  
Wang Jiabo ◽  
Shi Yehui ◽  
Wang Derong ◽  
Tan Jinzhong ◽  
...  

Analogue materials are widely used to simulate prototype rocks in geo-mechanical model tests. The large amounts of solid waste generated by a large-scale model test has always posed problems for studies. The re-use of analogue materials can significantly reduce the cost of geo-mechanical model tests and the resulting environmental problems. However, despite the environmental and economic benefits, there have been few reports on the re-use of analogue materials. In this work, a recycling method for a resin-based analogue material is studied experimentally. More than 300 samples were prepared and tested. By adding a certain amount of resin in solution form to the recycled material, regenerated samples with properties consistent with those of the samples prior to recycling were obtained. Based on a comparative analysis of the test data, an equation is proposed for the calculation of the appropriate amount of resin addition in the recycling process. Thus, a simple and effective recycling method is established for a resin-based analogue material. Verification was performed by independent tests on three group samples with different proportions, and the possibility of repeated recycling was also confirmed. The proposed recycling method makes the cyclic utilization of resin-based analogue material possible and is helpful for reducing the cost and pollution of geo-mechanical model tests.


1999 ◽  
pp. 135-144
Author(s):  
Takaya HIGUCHI ◽  
Hisashi AOKI ◽  
Kenji ISHIHARA ◽  
Yoshimichi TSUKAMOTO ◽  
Takayuki MASUO

2017 ◽  
Vol 35 (8) ◽  
pp. 1058-1067
Author(s):  
Long Chen ◽  
Yonghui Chen ◽  
Jiangwei Shi ◽  
Geng Chen

Author(s):  
Xavier Arino ◽  
Jaap de Wilde ◽  
Massimiliano Russo ◽  
Guttorm Grytøyr ◽  
Michael Tognarelli

Large scale model tests have been conducted in a towing tank facility for the determination of the hydrodynamic coefficients of subsea blowout preventers. A subsea blowout preventer (BOP) is a large, complex device 10–15 [m] tall, weighing 200–450 [ton]. The BOP stack consists of two assemblies, the ‘lower marine riser package’ (LMRP) connected to the riser string and the BOP itself, connected to the wellhead. Together they represent a large lumped mass, which directly influences the natural frequencies and vibration modes of the riser system, particularly those of the BOP-wellhead-casing assembly. Large uncertainties in the estimates of the hydrodynamic coefficients (added mass, lift and drag or damping) result in large uncertainties in the fatigue damage predictions of the riser and wellhead system. The trend toward larger and heavier BOPs, which could place BOP-wellhead-casing oscillation frequencies in the range of wave frequencies, has motivated Statoil and BP to start a new research project on this subject. The project involves a large scale model test for experimental determination of hydrodynamic coefficients. Two different BOP designs were tested in a towing tank at model scale 1:12. The models weighed about 50 [kg] in air and were about 1.2–1.5 [m] tall. A six-degree-of-freedom oscillator was mounted under the carriage of the towing tank for oscillation of the models in different directions. Static tow tests and forced oscillation tests with and in the absence of steady current were carried out. Keulegan-Carpenter (KC) numbers ranged between 0.2 and 2.0, while the Sarpkaya frequency parameter β was in the range from 4,000 to 50,000. The Reynolds numbers of the static tow tests ranged between 50,000 and 150,000. This paper focuses particularly on tests in the surge direction with and in the absence of a steady current. Results indicate that the hydrodynamic coefficients for BOP stacks are quite different from those of simpler geometries like a circular cylinder. In addition, they provide new insight for analytical modeling of global hydrodynamic forces on BOPs in many configurations and scenarios.


Author(s):  
JOACHIM GRÜNE ◽  
ZEYA WANG ◽  
GEOFFREY BULLOCK ◽  
CHARLOTTE OBHRAI

Sign in / Sign up

Export Citation Format

Share Document