lumped mass
Recently Published Documents


TOTAL DOCUMENTS

757
(FIVE YEARS 173)

H-INDEX

30
(FIVE YEARS 5)

Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 33
Author(s):  
Minghe Shan ◽  
Lingling Shi

The space debris problem poses a huge threat to operational satellites and has to be addressed. Multiple removal methods have been proposed to keep Earth’s orbit stable. Flexible connection capturing methods, such as the harpoon system, tether–gripper system and the net system, are potential candidate methods for space debris removal in the future. However, the tethered system is usually assumed as a dumbbell model where two end masses are connected by a rigid bar. This traditional model is not accurate enough to predict the motion of the target, neither the whole system. In this paper, three models, namely the modified dumbbell model, lumped-mass model and the ANCF model, to describe a tethered post-capture system for space debris removal are described and compared. Moreover, modal analysis of the tethered system is performed, and an analytical solution of the system’s natural frequency is derived. In addition, two configurations of the tethered system, namely the single tether configuration and the sub-tether configuration are simulated and compared based on three models, respectively. Finally, the influence on the chaser satellite by the initial angular velocity of the target is analyzed.


2022 ◽  
Vol 12 (2) ◽  
pp. 615
Author(s):  
Haobo Wang ◽  
Yulai Zhao ◽  
Zhong Luo ◽  
Qingkai Han

Squeeze film damper (SFD) is widely used in the vibration suppression of aeroengine rotor systems, but will cause complex motions of the rotor system under specific operating conditions. In this paper, a lumped-mass dynamic model of the high-pressure rotor system in an aeroengine is established, and the nonlinear stiffness and damping formula of SFD are introduced into the above model. The vibration responses of the rotor system under different rotating speeds and with different unbalances are investigated numerically, and the influence of SFD on the rotor system vibration and the change of suppression ability are compared and analyzed. The results show that in the case of high speed, together with a small unbalance, the rotor system will perform a complex vibration or a bistable vibration due to SFD. If the unbalance is properly increased under the same case of high speed, the vibration of the rotor becomes single-harmonic and the bistable vibration disappears. The research results can provide a helpful reference for analyzing complex vibration mechanisms of the rotor system with SFD and achieving an effective vibration suppression through unbalance regulation.


2022 ◽  
pp. 002199832110635
Author(s):  
Junhong Zhu ◽  
Tim Frerich ◽  
Adli Dimassi ◽  
Michael Koerdt ◽  
Axel S. Herrmann

Structural aerospace composite parts are commonly cured through autoclave processing. To optimize the autoclave process, manufacturing process simulations have been increasingly used to investigate the thermal behavior of the cure assembly. Performing such a simulation, computational fluid dynamics (CFD) coupled with finite element method (FEM) model can be used to deal with the conjugate heat transfer problem between the airflow and solid regions inside the autoclave. A transient CFD simulation requires intensive computing resources. To avoid a long computing time, a quasi-transient coupling approach is adopted to allow a significant acceleration of the simulation process. This approach has been validated for a simple geometry in a previous study. This paper provides an experimental and numerical study on heat transfer in a medium-sized autoclave for a more complicated loading condition and a composite structure, a curved shell with three stringers, that mocks the fuselage structure of an aircraft. Two lumped mass calorimeters are used for the measurement of the heat transfer coefficients (HTCs) during the predefined curing cycle. Owing to some uncertainty in the inlet flow velocity, a correction parameter and calibration method are proposed to reduce the numerical error. The simulation results are compared to the experimental results, which consist of thermal measurements and temperature distributions of the composite shell, to validate the simulation model. This study shows the capability and potential of the quasi-transient coupling approach for the modeling of heat transfer in autoclave processing with reduced computational cost and high correlation between the experimental and numerical results.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Victor Okonkwo ◽  
Chukwurah Aginam ◽  
Charles Nwaiwu

Continuous systems are sometimes analysed as lumped masses connected by massless elements. This reduces the structure’s degree of freedom and therefore simplifies the analysis. However this over simplification introduces an error in the analysis and the results are therefore approximate. In this work sections of the vibrating beam were isolated and the equations of the forces causing vibration obtained using the Hamilton’s principle. These forces were applied to the nodes of an equivalent lumped mass beam and the stiffness modification needed for it to behave as a continuous beam obtained. The beam’s stiffness was modified using a set of stiffness modification factors to . It was observed that by applying these factors in the dynamic analysis of the beam using the Lagrange’s equation, we obtain the exact values of the fundamental frequency irrespective of the way the mass of the beam was lumped. From this work we observed that in order to obtain an accurate dynamic response from a lumped mass beam there is need to modify the stiffness composition of the system and no linear modification of the stiffness distribution of lumped mass beams can cause them to be dynamically equivalent to the continuous beams. This is so because the values of the modification factors obtained for each beam segment were not equal. The stiffness modification factors were obtained for elements at different sections of the beam


2021 ◽  
pp. 146808742110689
Author(s):  
Bin Chen ◽  
Yunbo Hu ◽  
Yibin Guo ◽  
Zhijun Shuai ◽  
Chongpei Liu ◽  
...  

The coupling between the crankshaft and the camshaft is neglected before in fault diagnosis which may lead to incomplete fault information. In this paper, a new torsional coupling model of a diesel generator transmission system is proposed for fault diagnosis. The natural frequency and forced torsional vibration response of the model are obtained by the system matrix method and Newmark-β method. For the system without considering the lumped mass of camshafts, some key natural frequencies are lost. The vibration dynamics are compared for the transmission system with and without the new coupling model. And important frequency responses are missed in the spectrums of the forced torsional vibration without the new coupling model. Finally, the new coupling model is implemented in fault diagnosis and the cause of an unusual vibration fault is deduced in the simulation, which confirms the feasibility of the proposed model in fault diagnosis.


2021 ◽  
Author(s):  
Jagadeesh Anmala ◽  
Rabi H Mohtar

Abstract The upper and lower bounds of amplification factors of lumped finite element schemes are compared with nodal (integer or half-integer multiple of) eigen-value solutions of consistent finite element scheme at element and node levels of error analysis. The closeness or proximity between bounds on solutions of amplification factors and eigen-solutions reveals that the two methods, consistent and lumped finite element schemes are equivalent. The element error solutions of lumped mass matrix assumption and consistent nodal solution denotes the element-node error equivalence and the nodal solutions of all of the finite element schemes denote the node-node error equivalence for square finite elements in kinematic wave shallow water equations. The comparison plots of lumped and consistent finite element schemes are presented in this paper for illustration.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hanlin Huang ◽  
Shengping Fu ◽  
Shanming Luo

The influences of transmission housing elastic deformations on the vibration gear shafting characteristics are studied. The vibration model of the vehicle transmission system in consideration of the dynamics coupling of the housing and the gear shafting is constructed. Aiming at a vehicle transmission, the mathematical model of the bending and torsional gear shafting vibrations is established based on the lumped mass method. Following the elastic treatment of the box, a comprehensive stiffness model at the bearing considering the housing deformation is proposed to achieve the dynamic coupling between the box and the gear shafting system. Furthermore, the gear shafting vibration characteristics considering housing deformations are obtained by integrating multisource dynamic excitation, which is solved using an iterative method. The results are verified through a bench test. And, it shows that the elastic deformation of the housing aggravates the gear shafting vibration (bending and torsional coupled vibration). The peak frequency mostly remains the same. The maximum speed changes amplitude and associated root mean square value (calculated at the gear position) increase by 55.5% and 59.6%, respectively. Next, the maximum bearing support force and its root mean square value are increased by 63.7% and 97.6%, respectively. Finally, the largest increase in maximum vibration acceleration at the measuring point and the simulated root mean square value are 90% and 63.1%, respectively. It is concluded that the research results provide a theoretical basis for the study of transmission dynamic reliability.


Author(s):  
Artur Movsessian ◽  
David Garcia Cava ◽  
Dmitri Tcherniak

Abstract In recent years, Machine Learning (ML) techniques have gained popularity in Structural Health Monitoring (SHM). These have been particularly used for damage detection in a wide range of engineering applications such as wind turbine blades. The outcomes of previous research studies in this area have demonstrated the capabilities of ML for robust damage detection. However, the primary challenge facing ML in SHM is the lack of interpretability of the prediction models hindering the broader implementation of these techniques. For this purpose, this study integrates the novel Shapley Additive exPlanations (SHAP) method into a ML-based damage detection process as a tool for introducing interpretability and, thus, build evidence for reliable decision-making in SHM applications. The SHAP method is based on coalitional game theory and adds global and local interpretability to ML-based models by computing the marginal contribution of each feature. The contribution is used to understand the nature of damage indices (DIs). The applicability of the SHAP method is first demonstrated on a simple lumped mass-spring-damper system with simulated temperature variabilities. Later, the SHAP method has been evaluated on data from an in-operation V27 wind turbine with artificially introduced damage in one of its blades. The results show the relationship between the environmental and operational variabilities (EOVs) and their direct influence on the damage indices. This ultimately helps to understand the difference between false positives caused by EOVs and true positives resulting from damage in the structure.


Author(s):  
A Mandal ◽  
C Ray ◽  
S Haldar

The presence of cutouts at different positions of laminated shell component in marine and aeronautical structures facilitate heat dissipation, undertaking maintenance, fitting auxiliary equipment, access ports for mechanical and electrical systems, damage inspection and also influences the dynamic behaviour of the structures. The aim of the present study is to establish a comprehensive perspective of dynamic behavior of laminated deep shells (length to radius of curvature ratio less than one) with cut-out by experiments and numerical simulation. The glass epoxy laminated composite shell has been prepared in the laboratory by resin infusion. The experimental free vibration analysis is carried out on laminated shells with and without cut-out. The mass matrix is developed by considering rotary inertia in a lumped mass model in the numerical modeling. The results obtained from numerical and experimental studies are compared for verification and the consistency between mode shapes is established by applying modal assurance criteria.


2021 ◽  
Vol 11 (24) ◽  
pp. 11787
Author(s):  
Shan Zeng ◽  
Zhangtao Peng ◽  
Kaifa Wang ◽  
Baolin Wang ◽  
Jinwu Wu ◽  
...  

In this study, a sandwich piezoelectric nano-energy harvester model under compressive axial loading with a core layer fabricated of functionally graded (FG) porous material is presented based on the nonlocal strain gradient theory (NSGT). The von Karman type geometric nonlinearity and the axial loading were considered. The electromechanical governing equations were obtained using Hamilton’s principle. The nonlinear vibration frequencies, root mean square (RMS) voltage output and static buckling were obtained using the Galerkin method. The effects of different types of porous distribution, porosity coefficients, length scale parameters, nonlocal parameters, flexoelectricity, excitation frequencies, lumped mass and axial loads on the natural frequency and voltage output of nanobeams were investigated. Results show that the porous distributions, porosity coefficient of porous materials, the excitation frequencies and the axial load have a large effect on the natural frequency and voltage output of the sandwiched piezoelectric nanobeams. When the NSGT is considered, the critical buckling load depends on the values of the nonlocal parameters and strain gradient constants. In addition, the electromechanical conversion efficiency of the post-buckling process is significantly higher than that of the pre-buckling process. The flexoelectric effect can significantly increase the RMS voltage output of the energy harvester.


Sign in / Sign up

Export Citation Format

Share Document