wave overtopping
Recently Published Documents


TOTAL DOCUMENTS

708
(FIVE YEARS 163)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 10 (1) ◽  
pp. 89
Author(s):  
Luuk Barendse ◽  
Vera M. van Bergeijk ◽  
Weiqiu Chen ◽  
Jord J. Warmink ◽  
Aroen Mughal ◽  
...  

Wave overtopping can cause erosion on the landward slope due to high flow velocities and turbulence that cause high stresses on the cover. Innovative block revetments such as Grassblocks protect the subsoil of the dike against erosion. The blocks are permeable, which reduces the flow velocity and the pressures along the landward slope. The performance of these blocks is assessed in physical tests, which provides insights into the stability of the blocks. However, such experiments are expensive and accurate measurements are difficult due to highly turbulent conditions. Therefore, the goal of this study is to determine the hydrodynamic conditions at the dike cover caused by the wave run-up on the seaward slope and by the overtopping flow over the crest and landward slope. The geometry and wave conditions from the physical test at the Deltares Delta flume are implemented in an OpenFOAM® numerical model. Using the porousWaveFoam solver, a porous layer on the crest and landward slope is implemented, where the flow resistance of this porous layer largely depends on the resistance coefficients α [-] and β [-]. The numerical model is calibrated based on resistance coefficients as introduced earlier in the literature, which showed that the resistance coefficients of α=500 and β=2.0 performed best for the peak flow velocities and the peak pressures. The numerical model is evaluated by using these resistance coefficients in other time series of the physical tests. The evaluated model is then used to determine the hydrodynamic conditions on the landward slope, which showed that the pressure was the most influential hydrodynamic condition at the time of failure. Finally, the model showed that a porosity of n=0.6 and the porous layer thickness η=36mm reduced the peak pressure the most.


2021 ◽  
Vol 33 (6) ◽  
pp. 257-264
Author(s):  
Moon Su Kwak ◽  
Nobuhisa Kobayashi

This study established a numerical model capable of calculating the wave overtopping rate of coastal structures by nonlinear irregular waves using the FUNWAVE-TVD model, a fully nonlinear Boussinesq equation model. Here, a numerical model was established by coding the mean value approach equations of EurOtop (2018) and empirical formula by Goda (2009), and adding them as subroutines of the FUNWAVE-TVD model. The verification of the model was performed by numerically calculating the wave overtopping rate of nonlinear irregular waves on vertical wall structures and comparing them with the experimental results presented in EurOtop (2018). As a result of the verification, the numerical calculation result according to the EurOtop equation of this model was very well matched with the experimental result in all relative freeboard (Rc/Hmo) range under non-impulsive wave conditions, and the numerical calculation result of empirical formula was evaluated slightly smaller than the experimental result in Rc/Hmo < 0.8 and slightly larger than the experimental result in Rc/Hmo > 0.8. The results of this model were well represented in both the exponential curve and the power curve under impulsive wave conditions. Therefore, it was confirmed that this numerical model can simulate the wave overtopping rate caused by nonlinear irregular waves in an vertical wall structure.


2021 ◽  
Vol 33 (6) ◽  
pp. 357-366
Author(s):  
Young-Taek Kim ◽  
Jong-In Lee

In this study, hydraulic model tests were performed to investigate the stability of armor units at harbor side slope for rubble mound structures. The Korean design standard for harbor and fishery port suggested the design figures that showed the ratio of the armor weight for each location of rubble mound structures and it could be known that the same weight ratio was needed to the sea side and harbor side (within 0.5H from the minimum design water level) slope of rubble mound structures. The super structures were commonly applied to the design process of rubble mound structures in Korea and the investigation of the effects of super structures would be needed. The stability number (Nod = 0.5) was applied (van der Meer, 1999) and it showed that the armor (tetrapod) weight ratio for harbor side slope of rubble mound structures needed 0.8 times of that for sea side slope.


2021 ◽  
pp. 104062
Author(s):  
Ali Koosheh ◽  
Amir Etemad-Shahidi ◽  
Nick Cartwright ◽  
Rodger Tomlinson ◽  
Marcel R.A. van Gent

Modelling ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 686-705
Author(s):  
Anastasios Metallinos ◽  
Michalis Chondros ◽  
Andreas Papadimitriou

The simulation of wave propagation and penetration inside ports and coastal areas is of paramount importance to engineers and scientists desiring to obtain an accurate representation of the wave field. However, this is often a rather daunting task due to the complexity of the processes that need to be resolved, as well as the demanding levels of required computational resources. In the present paper, the enhancements made on an existing sophisticated Boussinesq-type wave model, concerning the accurate generation of irregular multidirectional waves, as well as an empirical methodology to calculate wave overtopping discharges, are presented. The model was extensively validated against 4 experimental test cases, covering a wide range of applications, namely wave propagation over a shoal, wave penetration in ports through a breakwater gap, wave breaking on a plane sloping beach, and wave overtopping behind breakwaters. Good agreement of the model results with all experimental measurements was achieved, rendering the wave model a valuable tool in real-life applications for engineers and scientists desiring to obtain accurate solutions of the wave field in wave basins and complex coastal areas, while keeping computational times at reasonable levels.


2021 ◽  
Vol 147 (6) ◽  
pp. 04021036
Author(s):  
Christopher H. Lashley ◽  
Jentsje van der Meer ◽  
Jeremy D. Bricker ◽  
Corrado Altomare ◽  
Tomohiro Suzuki ◽  
...  

2021 ◽  
Vol 116 ◽  
pp. 102888
Author(s):  
Corrado Altomare ◽  
Xavi Gironella ◽  
Alejandro J.C. Crespo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document