Discussion of “Nonlinear Flow Through Granular Media”

1969 ◽  
Vol 95 (1) ◽  
pp. 570-573
Author(s):  
Bruce W. Hunt
1968 ◽  
Vol 94 (4) ◽  
pp. 851-872 ◽  
Author(s):  
David Ellis Wright

2020 ◽  
Author(s):  
Philipp Eichheimer ◽  
Marcel Thielmann ◽  
Wakana Fujita ◽  
Gregor J. Golabek ◽  
Michihiko Nakamura ◽  
...  

Abstract. Fluid flow on different scales is of interest for several Earth science disciplines like petrophysics, hydrogeology and volcanology. To parameterize fluid flow in large-scale numerical simulations (e.g. groundwater and volcanic systems), flow properties on the microscale need to be considered. For this purpose experimental and numerical investigations of flow through porous media over a wide range of porosities are necessary. In the present study we sinter glass bead media with various porosities. The microstructure, namely effective porosity and effective specific surface, is investigated using image processing. We determine flow properties like hydraulic tortuosity and permeability using both experimental measurements and numerical simulations. By fitting microstructural and flow properties to porosity, we obtain a modified Kozeny-Carman equation for isotropic low-porosity media, that can be used to simulate permeability in large-scale numerical models. To verify the modified Kozeny-Carman equation we compare it to the computed and measured permeability values.


2000 ◽  
Vol 122 (3) ◽  
pp. 619-625 ◽  
Author(s):  
J. L. Lage ◽  
B. V. Antohe

Many important technological and natural processes involving flow through porous media are characterized by large filtration velocity. It is important to know when the transition from the linear flow regime to the quadratic flow regime actually occurs to obtain accurate models for these processes. By interpreting the quadratic extension of the original Darcy equation as a model of the macroscopic form drag, we suggest a physically consistent parameter to characterize the transition to quadratic flow regime in place of the Reynolds number, Re. We demonstrate that an additional data set obtained by Darcy, and so far ignored by the community, indeed supports the Darcy equation. Finally, we emphasize that the cubic extension proposed in the literature, proportional to Re3 and mathematically valid only for Re≪1, is irrelevant in practice. Hence, it should not be compared to the quadratic extension experimentally observed when Re⩾O1.[S0098-2202(00)01703-X]


1995 ◽  
Vol 38 (3) ◽  
pp. 863-868
Author(s):  
A. T. Hjelmfelt Jr. ◽  
D. B. Brooker

2022 ◽  
Vol 151 ◽  
pp. 106633
Author(s):  
Sergio Tunis Martins Filho ◽  
Ricardo Pieralisi ◽  
Fábio Cunha Lofrano

Sign in / Sign up

Export Citation Format

Share Document