A direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flows

2004 ◽  
Vol 16 (5) ◽  
pp. 1229-1241 ◽  
Author(s):  
S. Kenjereš ◽  
K. Hanjalić ◽  
D. Bal
AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 825-831
Author(s):  
Dirk G. Pfuderer ◽  
Claus Eifert ◽  
Johannes Janicka

2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Tian Ma ◽  
Claudio Santarelli ◽  
Thomas Ziegenhein ◽  
Dirk Lucas ◽  
Jochen Fröhlich

1999 ◽  
Author(s):  
Hamn-Ching Chen ◽  
Gengsheng Wei ◽  
Je-Chin Han

Abstract A multiblock Favre-Averaged Navier-Stokes (FANS) method has been developed in conjunction with a chimera domain decomposition technique for investigation of flat surface, discrete-hole film cooling performance. The finite-analytic method solves the FANS equations in conjunction with a near-wall second-order Reynolds stress (second-moment) closure model and a two-layer k-ε model. Comparisons of flow fields and turbulence quantities with experimental data clearly demonstrate the capability of the near-wall second-moment closure model for accurate resolution of the complex flow interaction bewteen the coolant jet and the mainstream. The near-wall second-moment anisotropic model provides better agreement in adiabatic film effectiveness prediction than the two-layer k-ε model.


Sign in / Sign up

Export Citation Format

Share Document