A Stochastic Mechanics And Its Connection With Quantum Mechanics

2005 ◽  
Author(s):  
Ying Oon Tan
2002 ◽  
Vol 296 (2) ◽  
pp. 371-389 ◽  
Author(s):  
M. Correggi ◽  
G. Morchio

Proceedings ◽  
2019 ◽  
Vol 33 (1) ◽  
pp. 25
Author(s):  
Nicholas Carrara

Entropic Dynamics is a framework for deriving the laws of physics from entropic inference. In an (ED) of particles, the central assumption is that particles have definite yet unknown positions. By appealing to certain symmetries, one can derive a quantum mechanics of scalar particles and particles with spin, in which the trajectories of the particles are given by a stochastic equation. This is much like Nelson’s stochastic mechanics which also assumes a fluctuating particle as the basis of the microstates. The uniqueness of ED as an entropic inference of particles allows one to continuously transition between fluctuating particles and the smooth trajectories assumed in Bohmian mechanics. In this work we explore the consequences of the ED framework by studying the trajectories of particles in the continuum between stochastic and Bohmian limits in the context of a few physical examples, which include the double slit and Stern-Gerlach experiments.


2004 ◽  
Vol 51 (6-7) ◽  
pp. 1093-1094
Author(s):  
Boon Leong Lan ◽  
Ying Oon Tan

2000 ◽  
Vol 14 (03) ◽  
pp. 73-78 ◽  
Author(s):  
LUIZ C. L. BOTELHO

We show that Nelson's stochastic mechanics suitably formulated as a Hamilton–Jacobi first-order equation leads straightforwardly to the Feynman path integral formulation of quantum mechanics.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 166
Author(s):  
Michael Beyer ◽  
Wolfgang Paul

Among the famous formulations of quantum mechanics, the stochastic picture developed since the middle of the last century remains one of the less known ones. It is possible to describe quantum mechanical systems with kinetic equations of motion in configuration space based on conservative diffusion processes. This leads to the representation of physical observables through stochastic processes instead of self-adjoint operators. The mathematical foundations of this approach were laid by Edward Nelson in 1966. It allows a different perspective on quantum phenomena without necessarily using the wave-function. This article recaps the development of stochastic mechanics with a focus on variational and extremal principles. Furthermore, based on recent developments of optimal control theory, the derivation of generalized canonical equations of motion for quantum systems within the stochastic picture are discussed. These so-called quantum Hamilton equations add another layer to the different formalisms from classical mechanics that find their counterpart in quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document