One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced raman scattering

2006 ◽  
Vol 125 (8) ◽  
pp. 081102 ◽  
Author(s):  
Ke Zhao ◽  
Hongxing Xu ◽  
Baohua Gu ◽  
Zhenyu Zhang
Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 449
Author(s):  
Francesco Dell’Olio

The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.


2008 ◽  
Vol 1077 ◽  
Author(s):  
Kushagra Singhal ◽  
Karthik Bhatt ◽  
Zhouyang Kang ◽  
Wouter Hoff ◽  
Aihua Xie ◽  
...  

ABSTRACTPhotoactive yellow protein (PYP) is a small cytosolic photoreceptor that actuates the negative phototactic response in its host organism Halorhodospira halophila. It has an optical absorption maximum at 446 nm (blue light). We report an initial study of the photocycle of PYP at the single molecule level using “high enhancement factor” surface-enhanced Raman scattering (SERS)-active nanostructures with 514 nm laser excitation. The SERS-active “nanometal-on-semiconductor” structures are prepared employing a redox technique on thin germanium films, coated on glass slides. Single molecule spectra are observed in terms of sudden appearance of discernable Raman peaks with spectral fluctuations. The single molecule spectra capture protonation, photo-isomerization, and H-bond breaking - the steps that are instrumental in the photocycle of PYP. This is indicative of single PYP molecules diffusing to high-enhancement-factor SERS sites, and undergoing photo-cycle under 514 nm excitation.


Sign in / Sign up

Export Citation Format

Share Document