Three-dimensional modeling of the plasma arc in arc welding

2008 ◽  
Vol 104 (10) ◽  
pp. 103301 ◽  
Author(s):  
G. Xu ◽  
J. Hu ◽  
H. L. Tsai
Author(s):  
G. Xu ◽  
H. L. Tsai

Most previous three-dimensional modeling work in gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool. Almost all three-dimensional weld pool models are based on the two-dimensional axisymmetric Gaussian assumption of plasma arc pressure and heat flux. In this paper the three-dimensional plasma arc is modeled and results are presented. The velocity, pressure, temperature, current density, and magnetic field of the plasma arc are computed by solving the conservation equations of mass, momentum, and energy, as well as part of Maxwell's equations. This three-dimensional model allows one to study the non-axisymmetric plasma arc caused by external perturbations such as the external magnetic field. It also provides more accurate boundary conditions when modeling the welding pool. The future work is to unify it with the weld pool model and accomplish a complete three-dimensional model of GTAW and GMAW.


Author(s):  
H. Guo ◽  
J. Hu ◽  
H. L. Tsai

A three-dimensional mathematical model and numerical techniques were developed for simulating a moving gas metal arc welding process. The model is used to calculate the transient distributions of temperature and velocity in the weld pool and the dynamic shape of the weld pool for aluminum alloy 6005-T4. Corresponding experiments were conducted and in good agreement with modeling predictions. The existence of a commonly observed cold-weld at the beginning of the weld, ripples at the surface of the weld bead, and crater at the end of the weld were all predicted. The measured microhardness around the weld bead was consistent with the predicted peak temperature and other metallurgical characterizations in the heat-affected zone.


2011 ◽  
Vol 56 (3) ◽  
pp. 766-770 ◽  
Author(s):  
Delphine Tardivo ◽  
Julien Sastre ◽  
Michel Ruquet ◽  
Lionel Thollon ◽  
Pascal Adalian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document