Nonlinear low frequency wave propagation in electronegative dusty plasma: Effects of adiabatic and nonadiabatic charge variations

2011 ◽  
Vol 18 (9) ◽  
pp. 093703 ◽  
Author(s):  
Subrata Sarkar ◽  
Samiran Ghosh ◽  
Manoranjan Khan ◽  
M. R. Gupta
1998 ◽  
Vol 47 (1-2) ◽  
pp. 273-280 ◽  
Author(s):  
Susmita Sarkar ◽  
Samiran Ghosh ◽  
Manoranjan Khan

2011 ◽  
Vol 84 (6) ◽  
Author(s):  
Samiran Ghosh ◽  
Subrata Sarkar ◽  
Manoranjan Khan ◽  
M. R. Gupta

2021 ◽  
pp. 1-34
Author(s):  
Shaowu Ning ◽  
Dongyang Chu ◽  
Fengyuan Yang ◽  
Heng Jiang ◽  
Zhanli Liu ◽  
...  

Abstract The characteristics of passive responses and fixed band gaps of phononic crystals (PnCs) limit their possible applications. For overcoming this shortcoming, a class of tunable PnCs comprised of multiple scatterers and soft periodic porous elastomeric matrices are designed to manipulate the band structures and directionality of wave propagation through the applied deformation. During deformation, some tunable factors such as the coupling effect of scatterer and hole in the matrix, geometric and material nonlinearities, and the rearrangement of scatterer are activated by deformation to tune the dynamic responses of PnCs. The roles of these tunable factors in the manipulation of dynamic responses of PnCs are investigated in detail. The numerical results indicate that the tunability of the dynamic characteristic of PnCs is the result of the comprehensive function of these tunable factors mentioned above. The strong coupling effect between the hole in the matrix and the scatterer contributes to the formation of band gaps. The geometric nonlinearity of matrix and rearrangement of scatterer induced by deformation can simultaneously tune the band gaps and the directionality of wave propagation. However, the matrix's material nonlinearity only adjusts the band gaps of PnCs and does not affect the directionality of wave propagation in them. The research extends our understanding of the formation mechanism of band gaps of PnCs and provides an excellent opportunity for the design of the optimized tunable PnCs and acoustic metamaterials.


Wave Motion ◽  
2016 ◽  
Vol 62 ◽  
pp. 98-113 ◽  
Author(s):  
D.A. Indejtsev ◽  
M.G. Zhuchkova ◽  
D.P. Kouzov ◽  
S.V. Sorokin

Sign in / Sign up

Export Citation Format

Share Document