Modulational instability of ion acoustic waves in e-p-i plasmas with electrons and positrons following a q-nonextensive distribution

2011 ◽  
Vol 18 (10) ◽  
pp. 102313 ◽  
Author(s):  
Parvin Eslami ◽  
Marzieh Mottaghizadeh ◽  
Hamid Reza Pakzad
Gases ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 148-155
Author(s):  
Subrata Banik ◽  
Nadiya Mehzabeen Heera ◽  
Tasfia Yeashna ◽  
Md. Rakib Hassan ◽  
Rubaiya Khondoker Shikha ◽  
...  

A generalized plasma model with inertial warm ions, inertialess iso-thermal electrons, super-thermal electrons and positrons is considered to theoretically investigate the modulational instability (MI) of ion-acoustic waves (IAWs). A standard nonlinear Schrödinger equation is derived by applying the reductive perturbation method. It is observed that the stable domain of the IAWs decreases with ion temperature but increases with electron temperature. It is also found that the stable domain increases by increasing (decreasing) the electron (ion) number density. The present results will be useful in understanding the conditions for MI of IAWs which are relevant to both space and laboratory plasmas.


2013 ◽  
Vol 79 (5) ◽  
pp. 833-836 ◽  
Author(s):  
B. K. DAS ◽  
R. P. SHARMA ◽  
N. YADAV

AbstractThe paper is concerned with the analytical study of nonlinear coupling of slow Alfvén wave (SW) with ion acoustic waves (IAWs) in high-β and low-β plasmas. Here the pump wave (SW) number density gets perturbed in the presence of IAW. The model equations of IAW and SW turn out to be the modified Zakharov system of equations when the ponderomotive nonlinearities are incorporated in the IAW and SW dynamics. Growth rate of modulational instability has been calculated. The relevance of these investigations for solar wind plasma and solar coronal plasma has also been discussed.


Sign in / Sign up

Export Citation Format

Share Document