reductive perturbation method
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 27)

H-INDEX

21
(FIVE YEARS 1)

2022 ◽  
Vol 9 ◽  
Author(s):  
M.F. Uddin ◽  
M.G. Hafez ◽  
Inho Hwang ◽  
Choonkil Park

In this work, the model equation with space fractional-order (FO) is used to investigate the nonlinear ion acoustic shock wave excitations (NIASWEs) in an unmagnetized collisionless weakly relativistic plasma having inertial relativistic ions fluid with viscous effects, inertial-less non-thermal electrons and inertial-less Boltzmann positrons. To do it, the Korteweg-de Vries Burgers equation (KdVBE) is derived from the considered fluid model equations by implementing the standard reductive perturbation method. Accordingly, such equation is converted to space fractional KdVBE via Agrawal’s variational principle with the help of the beta fractional derivative and its properties. The exact analytical solutions of KdVBE with space FO are determined via the modified Kudryashov method. The influence of space fractional and other related plasma parameters on NIASWEs are investigated. The outcomes would be useful to understand the nature of shocks with the presence of non-local or local space in many astrophysical and space environments (especially in the relativistic wind of pulsar magnetosphere, polar regions of neutron stars, etc.) and further laboratory verification.


Plasma ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Sharmin Jahan ◽  
Rubaiya Khondoker Shikha ◽  
Abdul Mannan ◽  
A A Mamun

The modulational instability (MI) of ion-acoustic waves (IAWs) is examined theoretically in a four-component plasma system containing inertialess electrons featuring a non-thermal, non-extensive distribution, iso-thermal positrons, and positively as well as negatively charged inertial ions. In this connection, a non-linear Schrödinger equation (NLSE), which dominates the conditions for MI associated with IAWs, is obtained by using the reductive perturbation method. The numerical analysis of the NLSE reveals that the increment in non-thermality leads to a more unstable state, whereas the enhancement in non-extensivity introduces a less unstable state. It also signifies the bright (dark) ion-acoustic (IA) envelope solitons mode in the unstable (stable) domain. The conditions for MI and its growth rate in the unstable regime of the IAWs are vigorously modified by the different plasma parameters (viz., non-thermal, non-extensive q-distributed electron, iso-thermal positron, the ion charge state, the mass of the ion and positron, non-thermal parameter α, the temperature of electron and positron, etc.). Our findings may supplement and add to prior research in non-thermal, non-extensive electrons and iso-thermal positrons that can co-exist with positive as well as negative inertial ions.


2021 ◽  
Author(s):  
Mahmoud Saad Afify ◽  
Zafar Iqbal ◽  
Ghulam Murtaza

Abstract The formation and the characteristics of spin electron acoustic (SEA) soliton in a beam interacting spin polarized electron-hole plasma are investigated. These wavepackets are supposed to be the source of heating during the excitation process. We have used the separate spin evolution-quantum hydrodynamic (SSE-QHD) model along with Maxwell equations and derived the Korteweg-de Vries (KdV) equation by using the reductive perturbation method (RPM). We note that the larger values of beam density and spin polarization can change the soliton nature from rarefactive to compressive. Our findings may be important to understand the characteristics of localized spin dependent nonlinear waves in nanosized semiconductor devices.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Liping Zhang ◽  
Jiangqiong Zheng ◽  
Chenxiao Liu ◽  
Jun Ma

Abstract This paper offers a shock wave solution to modified Zakharov–Kuznetsov (MZK) Burgers equation in inhomogeneous dusty plasmas with external magnetic field. For this purpose, the fluid equations are reduced to an MZK Burgers equation containing variable coefficients by reductive perturbation method. With the aid of travelling-wave transformation technique, we obtain the analytical oscillatory shock wave solution and monotonic shock wave solution for MZK Burgers equation. The effects of inhomogeneity, external magnetic field, dust charge variation on characteristics of two types of shock waves are examined in detail.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Khalid ◽  
Mohsin Khan ◽  
Ata ur-Rahman ◽  
Muhammad Irshad

Abstract The nonlinear propagation of ion-acoustic (IA) electrostatic solitary waves (SWs) is studied in a magnetized electron–ion (e–i) plasma in the presence of pressure anisotropy with electrons following Tsallis distribution. The Korteweg–de Vries (KdV) type equation is derived by employing the reductive perturbation method (RPM) and its solitary wave (SW) solution is determined and analyzed. The effect of nonextensive parameter q, parallel component of anisotropic ion pressure p 1, perpendicular component of anisotropic ion pressure p 2, obliqueness angle θ, and magnetic field strength Ω on the characteristics of SW structures is investigated. The present investigation could be useful in space and astrophysical plasma systems.


Author(s):  
H. T. Jia ◽  
Chun-Xia Xue ◽  
Q. Chen

A simple nonlinear model is constructed in this paper to study the solitary wave in an infinite circular magnetostrictive rod. Based on the constitutive relations for transversely isotropic magnetostrictive materials, considering the coupling of multiphysics, combined with Hamilton’s principle and Euler equation, the longitudinal wave equation (LWE) of the infinite circular rod is obtained. The nonlinearity considered is geometrically associated with the nonlinear normal strain in the longitudinal rod direction. The transverse Poisson’s effect is included by introducing the effective Poisson’s ratio. Solitary wave solution, non-topological bell-type soliton and singular periodic solutions of the LWE are obtained by the [Formula: see text]-expansion method. By using the reductive perturbation method, we derive the KdV equation, furthermore, the two-solitary solution is obtained. Numerical analysis results show that the increase of the magnetic field intensity or temperature will reduce the solitary wave’s propagation velocity. As the wave velocity ratio increases, the wave amplitude gradually increases; when the coupled physics parameter and the wave velocity ratio are constant, the increase of the dispersion parameter will make the wavelength longer. The dynamic behavior of the two-soliton solution in the magnetostrictive rod exhibits nonlinear superposition and has elastic collision characteristics.


2021 ◽  
Vol 67 (6 Nov-Dec) ◽  
Author(s):  
U.M. Abdelsalam

Using the reductive perturbation method, we have derived the Zakharov-Kuznetsov (ZK) equation for a multi-component plasma model consisting of electrons, positrons and the uid ions with positive and negative charges. The extended homogenous balance method has been applied to obtain the soliton solution in addition to many traveling wave solutions. various physical parameters have different effects on the profile of the solitary wave pulses which can show the propagation of the ion acoustic waves in laboratory plasmas and many astrophysical plasma systems as in Earth's ionosphere.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2278
Author(s):  
Dalibor L. Sekulic ◽  
Natasa M. Samardzic ◽  
Zivorad Mihajlovic ◽  
Miljko V. Sataric

In this paper, we performed analytical, numerical and experimental studies on the generation of soliton waves in discrete nonlinear transmission lines (NLTL) with varactors, as well as the analysis of the losses impact on the propagation of these waves. Using the reductive perturbation method, we derived a nonlinear Schrödinger (NLS) equation with a loss term and determined an analytical expression that completely describes the bright soliton profile. Our theoretical analysis predicts the carrier wave frequency threshold above which a formation of bright solitons can be observed. We also performed numerical simulations to confirm our analytical results and we analyzed the space–time evolution of the soliton waves. A good agreement between analytical and numerical findings was obtained. An experimental prototype of the lossy NLTL, built at the discrete level, was used to validate our proposed model. The experimental shape of the envelope solitons is well fitted by the theoretical waveforms, which take into account the amplitude damping due to the losses in commercially available varactors and inductors used in a prototype. Experimentally observed changes in soliton amplitude and half–maximum width during the propagation along lossy NLTL are in good accordance with the proposed model defined by NLS equation with loss term.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 334
Author(s):  
Haruna Katayama ◽  
Noriyuki Hatakenaka ◽  
Ken-ichi Matsuda

Analogue systems are used to test Hawking radiation, which is hard to observe in actual black holes. One such system is the electrical transmission line, but it suffers the inevitable issue of excess heat that collapses the successfully generated analogue black holes. Soliton provides a possible solution to this problem due to its stable propagation without unnecessary energy dissipation in nonlinear transmission lines. In this work, we propose analogue Hawking radiation in a nonlinear LC transmission line including nonlinear capacitors with a third-order nonlinearity in voltage. We show that this line supports voltage soliton that obeys the nonlinear Schrödinger equation by using the discrete reductive perturbation method. The voltage soliton spatially modifies the velocity of the electromagnetic wave through the Kerr effect, resulting in an event horizon where the velocity of the electromagnetic wave is equal to the soliton velocity. Therefore, Hawking radiation bears soliton characteristics, which significantly contribute to distinguishing it from other radiation.


Gases ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 148-155
Author(s):  
Subrata Banik ◽  
Nadiya Mehzabeen Heera ◽  
Tasfia Yeashna ◽  
Md. Rakib Hassan ◽  
Rubaiya Khondoker Shikha ◽  
...  

A generalized plasma model with inertial warm ions, inertialess iso-thermal electrons, super-thermal electrons and positrons is considered to theoretically investigate the modulational instability (MI) of ion-acoustic waves (IAWs). A standard nonlinear Schrödinger equation is derived by applying the reductive perturbation method. It is observed that the stable domain of the IAWs decreases with ion temperature but increases with electron temperature. It is also found that the stable domain increases by increasing (decreasing) the electron (ion) number density. The present results will be useful in understanding the conditions for MI of IAWs which are relevant to both space and laboratory plasmas.


Sign in / Sign up

Export Citation Format

Share Document