component plasma
Recently Published Documents


TOTAL DOCUMENTS

648
(FIVE YEARS 47)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Andre Calado Coroado ◽  
Paolo Ricci

Abstract A self-consistent model is presented for the simulation of a multi-component plasma in the tokamak boundary. A deuterium plasma is considered, with the plasma species that include electrons, deuterium atomic ions and deuterium molecular ions, while the deuterium atoms and molecules constitute the neutral species. The plasma and neutral models are coupled via a number of collisional interactions, which include dissociation, ionization, charge-exchange and recombination processes. The derivation of the three-fluid drift-reduced Braginskii equations used to describe the turbulent plasma dynamics is presented, including its boundary conditions. The kinetic advection equations for the neutral species are also derived, and their numerical implementation discussed. The first results of multi-component plasma simulations carried out by using the GBS code are then presented and analyzed, being compared with results obtained with the single-component plasma model.


Plasma ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Sharmin Jahan ◽  
Rubaiya Khondoker Shikha ◽  
Abdul Mannan ◽  
A A Mamun

The modulational instability (MI) of ion-acoustic waves (IAWs) is examined theoretically in a four-component plasma system containing inertialess electrons featuring a non-thermal, non-extensive distribution, iso-thermal positrons, and positively as well as negatively charged inertial ions. In this connection, a non-linear Schrödinger equation (NLSE), which dominates the conditions for MI associated with IAWs, is obtained by using the reductive perturbation method. The numerical analysis of the NLSE reveals that the increment in non-thermality leads to a more unstable state, whereas the enhancement in non-extensivity introduces a less unstable state. It also signifies the bright (dark) ion-acoustic (IA) envelope solitons mode in the unstable (stable) domain. The conditions for MI and its growth rate in the unstable regime of the IAWs are vigorously modified by the different plasma parameters (viz., non-thermal, non-extensive q-distributed electron, iso-thermal positron, the ion charge state, the mass of the ion and positron, non-thermal parameter α, the temperature of electron and positron, etc.). Our findings may supplement and add to prior research in non-thermal, non-extensive electrons and iso-thermal positrons that can co-exist with positive as well as negative inertial ions.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7499
Author(s):  
Sergey A. Khrapak

It is demonstrated that self-diffusion in dense liquids can be considered a random walk process; its characteristic length and time scales are identified. This represents an alternative to the often assumed hopping mechanism of diffusion in the liquid state. The approach is illustrated using the one-component plasma model.


2021 ◽  
Vol 54 (43) ◽  
pp. 435002
Author(s):  
Ana Flack ◽  
Satya N Majumdar ◽  
Grégory Schehr

2021 ◽  
Vol 67 (6 Nov-Dec) ◽  
Author(s):  
U.M. Abdelsalam

Using the reductive perturbation method, we have derived the Zakharov-Kuznetsov (ZK) equation for a multi-component plasma model consisting of electrons, positrons and the uid ions with positive and negative charges. The extended homogenous balance method has been applied to obtain the soliton solution in addition to many traveling wave solutions. various physical parameters have different effects on the profile of the solitary wave pulses which can show the propagation of the ion acoustic waves in laboratory plasmas and many astrophysical plasma systems as in Earth's ionosphere.


Gases ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 148-155
Author(s):  
Subrata Banik ◽  
Nadiya Mehzabeen Heera ◽  
Tasfia Yeashna ◽  
Md. Rakib Hassan ◽  
Rubaiya Khondoker Shikha ◽  
...  

A generalized plasma model with inertial warm ions, inertialess iso-thermal electrons, super-thermal electrons and positrons is considered to theoretically investigate the modulational instability (MI) of ion-acoustic waves (IAWs). A standard nonlinear Schrödinger equation is derived by applying the reductive perturbation method. It is observed that the stable domain of the IAWs decreases with ion temperature but increases with electron temperature. It is also found that the stable domain increases by increasing (decreasing) the electron (ion) number density. The present results will be useful in understanding the conditions for MI of IAWs which are relevant to both space and laboratory plasmas.


2021 ◽  
Vol 87 (4) ◽  
Author(s):  
Y. Nakajima ◽  
H. Himura ◽  
A. Sanpei

We derive the two-dimensional counter-differential rotation equilibria of two-component plasmas, composed of both ion and electron ( $e^-$ ) clouds with finite temperatures, for the first time. In the equilibrium found in this study, as the density of the $e^{-}$ cloud is always larger than that of the ion cloud, the entire system is a type of non-neutral plasma. Consequently, a bell-shaped negative potential well is formed in the two-component plasma. The self-electric field is also non-uniform along the $r$ -axis. Moreover, the radii of the ion and $e^{-}$ plasmas are different. Nonetheless, the pure ion as well as $e^{-}$ plasmas exhibit corresponding rigid rotations around the plasma axis with different fluid velocities, as in a two-fluid plasma. Furthermore, the $e^{-}$ plasma rotates in the same direction as that of $\boldsymbol {E \times B}$ , whereas the ion plasma counter-rotates overall. This counter-rotation is attributed to the contribution of the diamagnetic drift of the ion plasma because of its finite pressure.


Author(s):  
Abdolrasoul Gharaati ◽  
Mandana Mohammadi ◽  
Leila Rejaei

The soliton waves are one of the nonlinear phenomena which can propagate in the different types of plasma such as multiple particles of plasma, nonthermal plasma, and space plasma. Using the Sagdeev potential technique, the stability conditions of the soliton waves in the nonthermal plasma have been theoretically studied. One of the significant factors that can affect the propagation of the soliton waves is the distribution function such as nonMaxwellian distribution function or Kappa distribution function. In this paper, we try to investigate the soliton wave in the unmagnetized multi-component plasma consisting of the nonthermal electron and the nonthermal ion, positron and dust with Kappa distribution function. Then by using the Sagdeev potential, the nonlinear equation for the potential is obtained and then the compression and rarefaction soliton waves are computed with the numerical method for this nonlinear wave. Finally, by imposing the Sagdeev potential condition, we discuss the stability of these soliton waves.


Sign in / Sign up

Export Citation Format

Share Document