Nonlinear interaction of slow Alfvén wave with ion acoustic wave and applications to space plasma

2013 ◽  
Vol 79 (5) ◽  
pp. 833-836 ◽  
Author(s):  
B. K. DAS ◽  
R. P. SHARMA ◽  
N. YADAV

AbstractThe paper is concerned with the analytical study of nonlinear coupling of slow Alfvén wave (SW) with ion acoustic waves (IAWs) in high-β and low-β plasmas. Here the pump wave (SW) number density gets perturbed in the presence of IAW. The model equations of IAW and SW turn out to be the modified Zakharov system of equations when the ponderomotive nonlinearities are incorporated in the IAW and SW dynamics. Growth rate of modulational instability has been calculated. The relevance of these investigations for solar wind plasma and solar coronal plasma has also been discussed.

1983 ◽  
Vol 36 (5) ◽  
pp. 675
Author(s):  
NF Cramer ◽  
IJ Donnelly

The modulational, parametric and purely 8rowing mode instabilities of a magnetic pump with a finite radial wavenumber in cylindrical geometry are investigated. The modulational instability is compared with the instability of a parallel propagating pump wave, and the growth rates are found to be similar. The growth rate of a pair of ion-acoustic waves is shown to be zero for a collisionless plasma, in agreement with less general results found previously. The growth rate in the collisional case is found to be nonzero. The purely growing mode growth rate is calculated for excitation of ionacoustic plus torsional Alfven waves.


1975 ◽  
Vol 53 (6) ◽  
pp. 657-665
Author(s):  
S. R. Seshadri

The parametric excitation of the longitudinal, plasma mode and the transverse, electromagnetic mode in a warm, uniform plasma is investigated for the case in which the pump wave is another electromagnetic mode. The three interacting waves are assumed to propagate in the same direction. The longitudinal mode has two branches, namely, the electron plasma mode and the ion plasma mode. The parametric coupling of the longitudinal and the transverse waves in the presence of the pump wave leads to instabilities of the interacting waves. Illustrative numerical results are presented for the parametric instabilities of the electron plasma oscillation which is a part of the electron plasma mode and those of the ion acoustic waves and the ion plasma oscillations which are parts of the ion plasma mode. The ion acoustic wave is efficiently excited when the pump and the idler wave frequencies are approximately equal to one and a half times the electron plasma frequency.


1998 ◽  
Vol 51 (1) ◽  
pp. 113 ◽  
Author(s):  
K. K. Mondal ◽  
S. N. Paul ◽  
A. Roy Chowdhury

A pseudopotential approach is used to analyse the propagation of ion-acoustic waves in a plasma bounded by a cylindrical domain. The effect of the finite geometry is displayed both analytically and numerically. The phase velocity of the wave is determined and its variation is studied with respect to the plasma parameters. It is observed that the pseudopotential shows a wide variation of shape due to the imposition of a finite boundary condition. It is shown that if the other parameters are kept within a certain range of values, then the trapping of particles is favoured when the presence of the boundary is taken into account.


1986 ◽  
Vol 64 (7) ◽  
pp. 768-772
Author(s):  
Ludwig Schott

When a voltage pulse is applied to an exciter (probe or grid) immersed in a plasma, both an ion-acoustic wave and a freestreaming (ballistic) signal are excited. It is shown that the density perturbation produced by the freestreaming signal is independent of the shape of the applied-voltage pulse for times that are large compared with the temporal width of the pulse and at distances that are large compared with the size of the sheath at the exciter, but it depends on the second derivative of the zeroth-order velocity-distribution function. Analytic expressions that are valid for all times and positions are derived for a simple sheath model. Criteria are presented that enable the experimentalist to distinguish freestreaming modes from ion-acoustic waves.


Sign in / Sign up

Export Citation Format

Share Document