Optical ray tracing for crossed beam photothermal deflection spectroscopy

1987 ◽  
Author(s):  
Jeffrey A. Sell
Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1056
Author(s):  
Marcus Baumgart ◽  
Norbert Druml ◽  
Markus Dielacher ◽  
Cristina Consani

Robust, fast and reliable examination of the surroundings is essential for further advancements in autonomous driving and robotics. Time-of-Flight (ToF) camera sensors are a key technology to measure surrounding objects and their distances on a pixel basis in real-time. Environmental effects, like rain in front of the sensor, can influence the distance accuracy of the sensor. Here we use an optical ray-tracing based procedure to examine the rain effect on the ToF image. Simulation results are presented for experimental rain droplet distributions, characteristic of intense rainfall at rates of 25 mm/h and 100 mm/h. The ray-tracing based simulation data and results serve as an input for developing and testing rain signal suppression strategies.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
S. Ktifa ◽  
M. Ghrib ◽  
F. Saadallah ◽  
H. Ezzaouia ◽  
N. Yacoubi

We have studied the optical properties of nanocrystalline silicon (nc-Si) film deposited by plasma enhancement chemical vapor deposition (PECVD) on porous aluminum structure using, respectively, the Photothermal Deflection Spectroscopy (PDS) and Photoluminescence (PL). The aim of this work is to investigate the influence of anodisation current on the optical properties of the porous aluminum silicon layers (PASL). The morphology characterization studied by atomic force microscopy (AFM) technique has shown that the grain size of (nc-Si) increases with the anodisation current. However, a band gap shift of the energy gap was observed.


2008 ◽  
Vol 103 (9) ◽  
pp. 094906 ◽  
Author(s):  
Adam R. Krause ◽  
Charles Van Neste ◽  
Larry Senesac ◽  
Thomas Thundat ◽  
Eric Finot

1991 ◽  
pp. 269-272
Author(s):  
J. Serra ◽  
J. Andreu ◽  
G. Sardin ◽  
C. Roch ◽  
J.M. Asensi ◽  
...  

1992 ◽  
Vol 283 ◽  
Author(s):  
S. Q. Gu ◽  
J. M. Viner ◽  
P. C. Taylor ◽  
M. J. Williams ◽  
W. A. Turner ◽  
...  

ABSTRACTPhotoluminescence (PL) has been investigated in hydrogenated microcrystalline silicon (μc-Si:H) samples as a function of boron doping for films prepared by remote plasma enhanced chemical vapor deposition. When the dark conductivity a is below about 10-5 S/cm, the PL spectra exhibit a shape which is close to that of the so-called band tail PL in undoped hydrogenated amorphous silicon (a-Si:H) at 77 K. When a increases, the PL intensity decreases at 77 K. For samples with a on the order of 10-3 S/cm, the PL spectra show only a narrow, low energy PL band which peaks around 0.8–0.9 eV. In these samples, the PL at higher energy is essentially not observable. This trend is similar to that which occurs in doped a-Si:H. However, for higher doping levels (σ ∼ 1 S/cm) the PL in μc-Si:H, although very weak, exhibits a broad band which contains intensity at higher energies. The absorption spectra in these samples, as measured by photothermal deflection spectroscopy (PDS), show the same relationships with the corresponding PL spectra as do the PDS spectra in doped a-Si:H.


Sign in / Sign up

Export Citation Format

Share Document