porous aluminum
Recently Published Documents


TOTAL DOCUMENTS

488
(FIVE YEARS 99)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Alexander Lykov ◽  
Lubov Rachkovskaya ◽  
Ruslan Gevorgiz ◽  
Svetlana Zheleznova ◽  
Olga Poveshchenko

Fucoxanthin is a natural carotenoid obtained from seaweed which exhibits antioxidant properties. This research aimed to assess whether fucoxanthin, immobilized on aluminum-silicon carrier particles, has a toxic effect on immune cells. The viability, proliferation, nitric oxide production and myeloperoxidase activity of thymocytes and splenocytes of mice in vitro were studied. It was shown that fucoxanthin, immobilized on aluminum-silicon carrier particles, increased the survival rate and proliferation of mature immunocytes (splenocytes) after 24 hours exposure and increased the survival rate of naïve immunocytes (thymocytes) when exposed for 120 hours. In terms of myeloperoxidase, the activity of the immune cells was not affected by fucoxanthin immobilized on the carrier particles. The obtained results indicated that fucoxanthin, immobilized on particles of an aluminum-silicon carrier, did not have a toxic effect on mouse immunocytes. Keywords: Cylindrotheca closterium, fucoxanthin, γ-aluminum oxide, polydimethylsiloxane, thymocytes, splenocytes, viability, proliferation, nitric oxide, myeloperoxidase activity


Author(s):  
Takumi Fujioka ◽  
Yoshihiko Hangai ◽  
Hironao Mitsugi ◽  
Kenji Amagai

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5118
Author(s):  
Alexander Poznyak ◽  
Gerhard Knörnschild ◽  
Anatoly Karoza ◽  
Małgorzata Norek ◽  
Andrei Pligovka

The influence of arsenazo-I additive on electrochemical anodizing of pure aluminum foil in malonic acid was studied. Aluminum dissolution increased with increasing arsenazo-I concentration. The addition of arsenazo-I also led to an increase in the volume expansion factor up to 2.3 due to the incorporation of organic compounds and an increased number of hydroxyl groups in the porous aluminum oxide film. At a current density of 15 mA·cm–2 and an arsenazo-I concentration 3.5 g·L–1, the carbon content in the anodic alumina of 49 at. % was achieved. An increase in the current density and concentration of arsenazo-I caused the formation of an arsenic-containing compound with the formula Na1,5Al2(OH)4,5(AsO4)3·7H2O in the porous aluminum oxide film phase. These film modifications cause a higher number of defects and, thus, increase the ionic conductivity, leading to a reduced electric field in galvanostatic anodizing tests. A self-adjusting growth mechanism, which leads to a higher degree of self-ordering in the arsenazo-free electrolyte, is not operative under the same conditions when arsenazo-I is added. Instead, a dielectric breakdown mechanism was observed, which caused the disordered porous aluminum oxide film structure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asmaa M. Elsayed ◽  
Mohamed Rabia ◽  
Mohamed Shaban ◽  
Arafa H. Aly ◽  
Ashour M. Ahmed

AbstractThe unique optical properties of metal nitrides enhance many photoelectrical applications. In this work, a novel photodetector based on TiO2/TiN nanotubes was deposited on a porous aluminum oxide template (PAOT) for light power intensity and wavelength detection. The PAOT was fabricated by the Ni-imprinting technique through a two-step anodization method. The TiO2/TiN layers were deposited by using atomic layer deposition and magnetron sputtering, respectively. The PAOT and PAOT/TiO2/TiN were characterized by several techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray (EDX). The PAOT has high-ordered hexagonal nanopores with dimensions ~ 320 nm pore diameter and ~ 61 nm interpore distance. The bandgap of PAOT/TiO2 decreased from 3.1 to 2.2 eV with enhancing absorption of visible light after deposition of TiN on the PAOT/TiO2. The PAOT/TiO2/TiN as photodetector has a responsivity (R) and detectivity (D) of 450 mAW-1 and 8.0 × 1012 Jones, respectively. Moreover, the external quantum efficiency (EQE) was 9.64% at 62.5 mW.cm−2 and 400 nm. Hence, the fabricated photodetector (PD) has a very high photoelectrical response due to hot electrons from the TiN layer, which makes it very hopeful as a broadband photodetector.


Author(s):  
Sharaf U Nisa ◽  
Sunil Pandey ◽  
PM Pandey

Closed-cell porous aluminum is expected to be a prominent material in near future because of its light weight, high specific modulus of elasticity, high energy absorption efficiency and high sound-insulating capacity in the automotive and aerospace industries. Recently, a new method of foaming has been developed in which a precursor is formed using friction stir processing. In the friction stir processing route, a precursor is fabricated by embedding a mixture of blowing agent powder and stabilization agent powder into aluminum alloy plates by the significant stirring action of friction stir processing. By applying the friction stir processing route precursor method, the cost-effective Al-foam formation along with high productivity can be accomplished. In this study, titanium hydride powder has been used as the blowing agent as it is reported to be most compatible with aluminum matrix. The effect of percentage of stabilization agent, i.e. alumina powder on porosity of aluminum foams formed using friction stir processing route is analyzed. The porous aluminum formed with three different percentages of alumina is observed and their porosity is calculated. Also, the compressive performance of the obtained samples is observed in order to examine the alumina powder addition on mechanical properties of the obtained metal foam. This study aims at analyzing the significance of addition of the alumina into the blowing agent while developing the metal foam through friction stir processing route.


2021 ◽  
pp. 130610
Author(s):  
Yoshihiko Hangai ◽  
Rikuto Kishimoto ◽  
Mizuki Ando ◽  
Hironao Mitsugi ◽  
Yu Goto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document