A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions

1989 ◽  
Vol 90 (9) ◽  
pp. 4916-4926 ◽  
Author(s):  
János Pipek ◽  
Paul G. Mezey
Author(s):  
Xudong Weng ◽  
O.F. Sankey ◽  
Peter Rez

Single electron band structure techniques have been applied successfully to the interpretation of the near edge structures of metals and other materials. Among various band theories, the linear combination of atomic orbital (LCAO) method is especially simple and interpretable. The commonly used empirical LCAO method is mainly an interpolation method, where the energies and wave functions of atomic orbitals are adjusted in order to fit experimental or more accurately determined electron states. To achieve better accuracy, the size of calculation has to be expanded, for example, to include excited states and more-distant-neighboring atoms. This tends to sacrifice the simplicity and interpretability of the method.In this paper. we adopt an ab initio scheme which incorporates the conceptual advantage of the LCAO method with the accuracy of ab initio pseudopotential calculations. The so called pscudo-atomic-orbitals (PAO's), computed from a free atom within the local-density approximation and the pseudopotential approximation, are used as the basis of expansion, replacing the usually very large set of plane waves in the conventional pseudopotential method. These PAO's however, do not consist of a rigorously complete set of orthonormal states.


1983 ◽  
Vol 48 (7) ◽  
pp. 1842-1853 ◽  
Author(s):  
Stanislav Böhm ◽  
Josef Kuthan

Conformation of nicotinamide (I), 3-carbamoylpyridinium (IIa), 1-methyl-3-carbamoylpyridinium (IIb), and 1-methyl-1,4-dihydronicotinamide (IIIa) has been studied in the rigid rotor approximation on the basis of non-empirical STO-3G wave functions. The rotation barriers decrease in the order: IIIa > I ~ IIb > IIa. When confronted with semiempirical calculations, the conformation curves of molecular energy show a better qualitative similarity to the EHT than to NDDO and particularly to CNDO/2 curves. Relation of the calculated characteristics to experimental findings is discussed.


1970 ◽  
Vol 48 (20) ◽  
pp. 3154-3163 ◽  
Author(s):  
François Tonnard ◽  
Simone Odiot ◽  
Maryvonne L. Martin

A relation between the diamagnetic term for a proton bonded to a carbon atom and the linear combination of atomic orbital charges on C and H is established. Proton diamagnetic terms of some vinyl ethers are calculated, and the conformation of ethoxy group in these molecules studied.


2010 ◽  
Vol 7 (3) ◽  
pp. 260-272
Author(s):  
M. Monajjemi ◽  
A. Nouri ◽  
H. Monajemi

The hydrogen bonding effects that were produced from interaction of membrane lipid dipalmitoylphosphatidyl-ethanolamine (DPPE) with 1-5 water molecules, has been theoretically  investigated through the quantum mechanical calculations at the Hartree-Fock level of theory and the 3-21G, 6-31G and 6-31G* basis sets with the computational package of Gaussian 98. According to the obtained results of the structural optimization of the isolated DPPE in the gas phase, we can see the evidences of interactions in the head group of this macromolecule (from the molecular point of view we have a proton transfer from the ammonium group to the phosphate oxygen of zwitterionic form. As we know that the hydrogen bonding of DPPE with water molecules which have surrounded its head group plays an important role in the permeability of DPPE. So, in order to understand the microscopic physico-chemical nature of this subject we have analyzed bond and torsion angles of DPPE before and after added water molecules.  In this paper we have theoretically studied the complexes DPPE with water molecules which have surrounded its head group. As mentioned before, this theoretically study has been done through Hartree-Fock level of theory by using simple basis sets. Theoretical data shows that the interaction of head group of DPPE with water molecules causes some changes in the geometry of DPPE which were explained by the contribution of zwitterionic form of DPPE macromolecule, and finally hydrated DPPE becomes stable complex. Comparison between theoretical and experimental geometry data of DPPE macromolecule shows that the calculation at the HF/3-21 level of theory produces results which they are in better agreement with the experimental data. Moreover the hydrogen bonding effects on the NMR shielding tensor of selected atoms in the hydrated complexes of DPPE were reported. The ";Gauge Including Atomic Orbitals"; (GIAO) approaches within the SCF-Hartree-Fock approximation have been used in order to investigate the influence of hydrogen bonding of DPPE-water complex on the shielding tensors. Finally, the solvent affects on the stability of DPPE macromolecule, dipole moment and atomic charge of some selected atoms of DPPE molecule was discussed using Onsager model and Merz-Singh-Kolman schema.   Keywords  : Gauge Including Atomic Orbital, DPPE, hydrogen bonding, solvation, quantum mechanics, ab initio


Sign in / Sign up

Export Citation Format

Share Document