Spectroscopic constants and dipole moment functions of the 22 electron dications SiNe++, PF++, SO++, NCl++, and CAr++

1991 ◽  
Vol 95 (5) ◽  
pp. 3528-3535 ◽  
Author(s):  
Kirk A. Peterson ◽  
R. Claude Woods
1980 ◽  
Vol 35 (10) ◽  
pp. 1066-1070 ◽  
Author(s):  
P. Rosmus ◽  
E.-A. Reinsch

Abstract Potential energy and dipole moment functions have been calculated for the ground states of the NeH+ (1.0 ≦ R ≦ 15 a. u.) and the KrH+ (1.6 ≦ R ≦ 20 a. u.) ion from highly correlated SCEP/VAR and SCEP/CEPA electronic wave functions. The following spectroscopic constants have been derived: Ne20H+ re = 0.996 ± 0.003 Å, ωe = 2896 ± 20cm-1 , D0(Ne + H+) = 2.10 ± 0.05 eV; Kr84H+ re = 1.419 ± 0.003 Å, ωe = 2561 ±20 cm-1 , D0(Kr + H+) = 4.65 ±0.05 eV. The Einstein transition probability coefficients of spontaneous emission have been calculated for all transitions v ≦ 5 of Ne20H+, Ne20D+, Kr84H+ and Kr84D+, respectively.


1984 ◽  
Vol 39 (4) ◽  
pp. 349-353 ◽  
Author(s):  
Robert Klein ◽  
Pavel Rosmus

Near equilibrium potential energy and dipole moment functions have been calculated for the electronic ground state of the XeH+ ion from highly correlated SCEP/CEPA electronic wavefunctions. The following spectroscopic constants for 132XeH+ are obtained:Re= 1.611 ± 0.005 Å, ωe = 2313 ± 50cm-1, ωexe = 41 ± 5cm-1 and D0(Xe+ + H) = 3.90 ± 0.1 eV.Infrared transition dipole matrix elements and probability coefficients for 132XeH+ and 132XeD+ are given. The electric dipole moment functions of the protonated rare gas atoms HeH+ to XeH+ are discussed.


1979 ◽  
Vol 34 (11) ◽  
pp. 1269-1274 ◽  
Author(s):  
Erik Bjarnov

Vinyl ketene (1,3-butadiene-1-one) has been synthesized by vacuum pyrolysis of 3-butenoic 2-butenoic anhydride. The microwave and infrared spectra of vinyl ketene in the gas phase at room temperature have been studied. The trans-rotamer has been identified, and the spectroscopic constants were found to be Ã= 39571(48) MHz, B̃ = 2392.9252(28) MHz, C̃ = 2256.0089(28) MHz, ⊿j = 0.414(31) kHz, and ⊿JK = - 34.694(92) kHz. The electrical dipole moment was found to be 0.987(23) D with μa = 0.865(14) D and μb = 0.475(41) D. A tentative assignment has been made for 17 of the 21 normal modes of vibration


1998 ◽  
Vol 109 (16) ◽  
pp. 6725-6735 ◽  
Author(s):  
M. Tamanis ◽  
M. Auzinsh ◽  
I. Klincare ◽  
O. Nikolayeva ◽  
R. Ferber ◽  
...  

2006 ◽  
Vol 84 (11) ◽  
pp. 959-971 ◽  
Author(s):  
M Korek ◽  
A M Moghrabi ◽  
A R Allouche ◽  
M Aubert Frécon

For the molecular ion LiCs+ the potential energy are calculated for the 39 lowest molecular states of symmetries 2Σ+, 2Π, 2Δ, and Ω = 1/2, 3/2, 5/2. Using an ab initio method, the calculation is based on nonempirical pseudopotentials and parameterized [Formula: see text]-dependent polarization potentials. Gaussian basis sets are used for both atoms and spin-orbit effects are taken into account. The spectroscopic constants for 20 states are calculated by fitting the calculated energy values to a polynomial in terms of the internuclear distance r. Through the canonical functions approach, the eigenvalue Ev, the abscissas of the corresponding turning points (rmin and rmax), and the rotational constants Bv are calculated for up to 44 vibrational levels for four bound states. Using the same approach the dipole moment functions, the corresponding matrix elements, and the transition dipole moments are calculated for the bound states (1)2Σ+, (2)2Σ+, and (1)2Π. The comparison of the present results with those available in literature for the ground state shows a very good agreement. Extensive tables of energy values versus internuclear distance are displayed at the following address: http://lasim.univ-lyon1.fr/allouche/licsso.html.PACS Nos.: 31.15.Ar, 31.25.–v, 31.25.Nj


Sign in / Sign up

Export Citation Format

Share Document